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Stochastic neural network model for spontaneous bursting in hippocampal slices
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A biologically plausible, stochastic, neural network model that exhibits spontaneous transitions between a
low-activity (norma) state and a high-activitiepileptio state is studied by computer simulation. Brief excur-
sions of the network to the high-activity state lead to spontaneous population bursting similar to the behavior
observed in hippocampal slices bathed in a high-potassium medium. Although the variability of interburst
intervals in this model is due to stochasticity, first return maps of successive interburst intervals show trajec-
tories that resemble the behavior expected near unstable periodic @B of systems exhibiting deter-
ministic chaos. Simulations of the effects of the application of chaos control, periodic pacing, and anticontrol
to the network model yield results that are qualitatively similar to those obtained in experiments on hippo-
campal slices. Estimation of the statistical significance of UPOs through surrogate data analysis also leads to
results that resemble those of similar analysis of data obtained from slice experiments and human epileptic
activity. These results suggest that spontaneous population bursting in hippocampal slices may be a manifes-
tation of stochastic bistable dynamics, rather than of deterministic chaos. Our results also question the reli-
ability of some of the recently proposed, UPO-based, statistical methods for detecting determinism and chaos
in experimental time-series data.

DOI: 10.1103/PhysReVvE.66.051908 PACS nun)er87.18.Sn, 05.45.Gg, 05.45.Tp, 87.19.La

[. INTRODUCTION Since UPOs are known to be embedded in typical chaotic
attractors, the presence of UPO-like trajectories suggests the
With the development of many new techniques of nonlin-occurrence of deterministic chaos. Then a variant of a chaos
ear time-series analysj&], a number of recent studies have control technique proposed by Ott, Grebogi and Ydikg] is
attempted to understand brain dynaniizkin the context of  used to attempt to make the IBls more uniform. Application
deterministic chaogd3]. Experimental studies on normal of this technique is found to make the bursts more periodic.
brain activity[4] and epilepsy5] have looked for signature These observations are interpreted as evidence for determin-
of chaos. New hypothesg8,7] have been proposed for pos- istic chaos in the neuronal population bursting behavior. Re-
sible roles of chaos in the functioning of the brain. A con-sults of periodic pacing and the application of an “anticon-
vincing demonstration of the occurrence of deterministictrol” method designed to make the IBIs more irregular are
chaos in brain dynamics is of fundamental importance inalso reported. Since the spontaneous bursting observed in
understanding the collective behavior of neuronal networkshis in vitro experiment exhibits many similarities with inter-
in the brain. It may also lead to the possibility of short-termictal spikes in human epilepsy, it is suggested that human
prediction and control, with potentially important medical epileptic activity may also be chaotic and therefore amenable
applications. to methods of chaos control and anticontrol. The possibility
Due to the large number of neurons involved in any spe-of application of these methods in the treatment of human
cific brain function, the underlying dynamics is inherently epilepsy has attracted wide attentidrd].
high dimensional. This makes reliable detection of low- Some of the methodology and conclusions of the brain-
dimensional chaos in brain signals a formidable taskslice experiment have been questioned by Christini and Col-
Datasets from physiological systems are often inadequatelyns [12] who have shown that the method of chaos control
small, nonstationary, and contaminated with noise, posingised by Schiffet al. works equally well in some simplsto-
severe problems for a statistically reliable time-series analyehasticsystems. These authors consider the effects of addi-
sis. Though a number of recent studies have reported thttve noise on the behavior of the FitzZHugh-Nagumo equa-
detection of low-dimensional chaos through time-seriegions which describe a single spiking neuron. The presence
analysis of brain signals, experts often remain skepticabf the noise causes the interspike inter¢&l) to be irregu-
about such claim§s]. lar. The first return map of successive ISIs shows evidence
The results of ain vitro experiment of Schifet al.[9]on  for the existence ofapparent unstable fixed points, and the
spontaneous population bursting in rat hippocampal sliceapplication of the chaos control method makes the ISIs more
bathed in a medium with high potassium concentration haveegular. The qualitative behavior found in this simple system
attracted much attention in this context. In this work, theis similar to that found in the experiment of Schéff al. This
presence of unstable periodic orbit$PO9 in the dynamics work casts doubt on the interpretation of the results of the
of the neuronal network is inferred from an analysis of thebrain-slice experiment as evidence for the occurrence of de-
first return map of successive interburst intervéBls). terministic chaos.

1063-651X/2002/66)/05190818)/$20.00 66 051908-1 ©2002 The American Physical Society



B. BISWAL AND C. DASGUPTA PHYSICAL REVIEW E66, 051908 (2002

More recently, several surrogate methpti3, 14 to assess methods used in recent studigs,17,19 to infer the pres-
the statistical significance of UPOs detected from time-seriesnce of determinism and chaos in experimental time-series
analysis have been proposed. Applications of some of theg#ata. A summary of our main results and conclusions is pre-
methods to the time-series data of the brain-slice experimergiented in Sec. V. Some of the results reported here were
claim[15,16] to have reestablished the original conclusion ofSuUmmarized in a recent Lettg21].
Schiff et al. on the existence of deterministic chaos in the
bursting dynamics of hippocampal slices. Results similar to Il. THE NEURAL NETWORK MODEL
those in Refs[9] and[16] have been reportefl7,1§ re- AND ITS DYNAMICS
cently for hippocampal slices studied under three different
experimental conditionghigh potassium, zero magnesium, In this section, we define the neural network model used
and in the presence of-amino butyric acid (GABA)- in our SImuI_atlons and describe its bursting dynamics. This
receptor antagonistsA similar conclusion about the occur- Model was first proposed by Mehta, Dasgupta, and (@)
rence of chaos in epileptic brain activity has also beerfor describing the process of “kindling[22] of focal epi-
reached from a surrogate analy§ik] of time-series data lepsy. Kindling is a phenomenon in which a part of the brain
recorded from a human subject. is externally stimulated, either through electric pulses or

In this paper, we address the issue of whether or not thEhrough chemicals, to produce spontaneous epileptic activity.
spontaneous population bursts found in brain-slice preparat is believed that kindling provides a good animal model for
tions and analogous interictal spikes in the human epilepti¢he development of an understanding of epilepsy in the mam-
brain are manifestations of deterministic chaos. Our workmalian brain. In the present work, we have used kindled
involves extensive simulations of an existing neural network'etworks to model spontaneous population bursting in hip-
model for focal epilepsy20]. This network exhibits a low- Pocampal slices and interictal spikes in human epilepsy.
activity (norma) attractor and a high-activitiepileptio one.
Brief excursions of the network to the high-activity state in A. The model
the absence of any external stimulus appear as spontaneous

bursts analogous to those observed in the brain-slice experi- The ne.tv_vcr)LrI; consists dﬂhl\/I(;CuA!O(r:]I’!-PIttS(blnal’)b ngu-
ment. In our model, however, the irregularity of the IBIs is 'ONStSih, i=1.2,... N, each of which is excitatory and can

strictly a consequence of stochasticity arising from the rant@ke the two values 0 and 1, representing low and high firing

domness of the sequence in which the neurons are updater(‘]‘.tes' respectively. The inhibitory neurons are collectively

The network model and its bursting dynamics are describef!0d€€d by a background inhibition, which is assumed to be
in Sec. 1. proportional to the number of active excitatory neurons. Our

Although the variability of the IBIs in our network model moQ(_aI with binary neurons is clearly inappropriate . d.e'
is a consequence of stochasticity, we find trajectories th pnblng. phenomer!a that. d(_apend crucially on the detailed
may be interpreted as evidence for the presendagarent iophysical properties of individual neurons. However, such

UPOs[unstable fixed pointUFPS in the first return map models are expectd@3] to be adequate for qualitative de-

This allows us to apply the methods of chaos control peri_scriptions of the collective dynamical behavior of biological

odic pacing, and anticontrol considered by Schtffil. to our networlf‘s. N _ o
stochastic neural network model. We have also studied the 1N€ ‘local field” hi(t) at theith neuron at time is given
effects of demand pacing on the network dynamics. Res:uItQy
of our simulations of the effects of these control methods are N
described in detail in Sec. Ill. These results are found to be hi(t)= z [{3;S;(H—wS (1)}
quite similar to those obtained in brain-slice experiments. j=1
Section IV contains the results of surrogate analysis for
the statistical significance of the UPO-like trajectories found
in the IBI datasets. Three different methods are considered in
our analysis. These methods include the ones used recentiyherew is the relative strength of inhibition, is the relative
to claim evidence for the presence of statistically significanstrength of the delayed signal, amds the time delay asso-
UPOs in time-series data obtained from brain-slice expericiated with the delayed signal. The four terms from left in
ments[16,17] and from human epileptic activifyi.9]. Appli- Eq. (1) represent, respectively, fast global excitation, fast
cations of these methods to the IBI time series obtained fronglobal inhibition, slow global excitation, and slow global in-
simulations of our stochastic neural network model yield re-hibition. These four ingredients are believi2¥] to be es-
sults that are similar to some of those reported in Refssential for a realistic modeling of neural oscillations in the
[16,17,19. hippocampus. The “time't is discrete, with each unitre-
Thus, our stochastic neural network model with bistableferred to as one “pasg”corresponding to the updating bif
dynamics reproduces most of the results obtained in braineurons. The neurons are updated one at a timeram@dom
slice experiments. This result casts doubt on the interpretssequenceaccording to the rul&(t+1)=1 if h;(t)=0 and
tion of the experimental data as evidence for deterministic&S;(t+1)=0 if h;(t)<O0.
chaos, and suggests that epileptic brain activity may be a A fixed number (q) of random low-activity patterns
manifestation of stochastic bistability. Our work also ques-(memorie$ {&/},i=1,2,...N; u=1,2,...q, are stored
tions the reliability of some of the UPO-based statisticalin the synaptic matriced;; andK; in the following way:

+ MK Sj(t— 1) —w§(t—1)}], 1)
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with £971=¢! and J;=K;=0. To simulate low average S 120
activity of the network in the absence of any external stimu- 10.0 |
lus, the net activity of each memori‘,{\‘=1§{‘, is set at a 7.50 10'0 5 20.00 30.00 oo
value n<N. The n “active” neurons in each memory are :

chosen randomly. The “fast” synaptic connectiaks act to
stabilize the system in one of the memory states, while the FIG. 1. (a) Network dynamics before kindling, showing noisy,
“slow” connections Kj; tend to induce transitions from a low-amplitude oscillations of the net activi§y,, around an average
memory state to the next one in the sequence after value neam=10; (b) dynamics of the kindled network, showing
passes. The global inhibition represented bywherms pre-  spontaneous bursting at irregular time intervels; smoothened
vents simultaneous activation of more than one memoriesietwork activity with IBIs (T;,T, etc) computed from positive
With appropriate choice of the values of the paramefgps-  threshold crossings denoted by dark circles. These results were ob-
cifically, for A>1 andw< 1), the network exhibits a low- tained using random sequential updating.
activity limit cycle in which all theq memories are visited
sequentially[ 20]. alizations of the random memori¢g“}) exhibit varying de-
The simulations carried out in this study are for the fol-grees of kindling due to differences in the initial connectivity
lowing parameter valuesN=200, =20, n=10, w=0.6, pattern.
A=2, 7=2 passes. Proper functioning of the network in the For random sequential updating of the neurons, the
absence of any external inpfthe resting stabes verified by ~ kindled network makes occasional, short-lived, spontaneous
starting the network in the memory stajeat timet=0, and  transitions to the high-activity attractp20]. This is similar
then monitoring the time evolution of the overlaps“(t) !0 the spontaneous population bursting observed in the brain-
ZEiN:lgi,LSi(t)' w=1,2,...4, of the network with the slice experlment.'These burstg Qf high correlated activity ap-
memory states. The network evolution is found to follow abear as “spikes” n the net activity of the_ network. Th_e IBls
limit cycle in which it traverses sequentially the 20 memories3'® measure_d using the threshold crossing ”?e!?tmh L|k_e
in about 60 passes. The resulting low-amplitude, noisy oscil@ 0W-pass filter in experiments, tthe net aCt'V'S{vp(t)’_'S
lations of the net activityS,,(t)=={L,S(t), are shown in first smoothened (1) =Utsm ¢, 1Sup(t’), with
Fig. 1(a). tsm=40 passes. Whenev&,,(t) crosses an appropriately
chosen upper threshold in the positive direction, a burst is
recorded at the corresponding tirheBefore the occurrence
of the next burstS(t) must decrease below a lower thresh-
To simulate the excess excitability of brain slices bathedbld corresponding to the low-activity state of the network. To
in a high-potassium medium that induces spontaneous bursiwvoid rare occurrences of persistent high activigfractori-
ing, the network is “chemically kindled[20] through a nessis introduced in the network in the following manner. If
Hebbian learning mechanism defined in the following way.S,(t) remains higher than the upper threshold value con-
If, over n; consecutive passe§;=1 andS;=1 more often tinuously for 20 passes, the neuron configuratitthe cur-
thann, times, then the fast synaptic strength between the rent one as well as the previous ones accounting for the
two neurons is permanently set to 1. In our simulatiop, delayed signalare reset to one of the low-activity memory
=10 andn,=6. The networks are chemically kindled by patterns chosen randomly.
switching on the Hebbian learning for 50 initial passes under The net activity of a kindled network with refractoriness
reduced inhibition W is reduced from 0.6 to 0.24 during this is shown in Fig. 1b), and the smoothened net activity is
period. The Hebbian learning process generates many newlotted in Fig. 1c). Positive crossings denoted by dark
excitatory synaptic connections, leading to increased connecircles correspond to the occurrence of bursts and
tivity between different memories. This, in turn, leads to theT,,T,, ..., are theBls. Individual IBls are integers mea-
formation of a new high-activityepileptig attractor of the sured in units of passes.
dynamics corresponding to excess correlated firing of the We have studied 10 networks with different realizations of
neurons. Different network@.e., networks with different re- the random memories. A detailed analysis was carried out for

B. Spontaneous population bursting
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50 found to make periodic transitions to the high-activity attrac-
40 1 tor, as shown in Fig. @). In the PU scheme, all the neurons
E:; 30 ¢ are updated simultaneously. The dynamics under PU is quali-
o 20+t tatively similar to the behavior found for FSU. Depending on
10 the network state at the time of switching on the PU, the
0 network either remains confined to the low-activity attractor
40| or makes periodic transitions to the high-activity attractor
S 30l with somewhat higher degree of correlated activity than that
w% 20 | found for FSU. These observations establish that the under-
10 lying stochasticity in the updating scheme is an essential
0 requirement for the network to exhibit spontaneous bursting
similar to that observed in brain slicégrge variability in
_dor the IBIs).
£ 30 Among the three different updating procedures discussed
w 201 above, the RSU scheme also appears to be most “physical”
10 for describing the behavior of brain slices. A realistic de-
0 6(')0 8(')0 10'00 1200 14'00 1600 scription of the dynamics of a network of biological neurons
t may be obtained26] in terms of coupled differential equa-

tions that govern the time evolution of membrane potentials

FIG. 2. (a) Network dynamics under random sequential updat-and ionic currents. In this description, a neuron fites.,
ing, showing excursions to the high-activity attractor at irregulargenerates an action potenyia its net membrane potential
time intervals, and noisy low-amplitude oscillations of the net ac-exceeds a threshold. Once a neuron fires, it cannot fire again
tivity S,,(t) between these excursior(y) fixed sequence updating unless a short refractory period has elapsed. In the discrete-
(switched on at=1000) that traps the network in the low-activity time dynamics of our simple model, the unit of tintene
attractor, leading to low-amplitude periodic behaviorSgf(t); (c)  pas$ approximately corresponds to this refractory period
fixed sequence updatingwitched on att=1000) that produces [23]: each neuron can, on an average, fire once during this
periodic transitions to the high-activity attractor. period. However, if no external “clocklike” mechanism is

) ] _ . present, then there is no reason to expect that the membrane
six of these networks. Each network shows a wide distribupotentials of different neurons in a network would reach the

tion of IBIs and the value of the average IBI varies substantnreshold value at exactly the same time. Since external in-
tially from one network to another, reflecting different de- puts that may synchronize or order in time the firing of all
grees of kindling. Similar sample-to-sample variations havgne neurons are not expected to be present in sirchitro”

been found25] in hippocampal slices very similar to those pr4in slices, the asynchronous dynamics of the RSU scheme
used in the experiment of Reff9]. The variability of IBIS  shoyld be appropriate for describing such systems. We,
shown in the raw-data plots in R¢5] is qualitatively simi-  herefore, used the RSU scheme in all our simulations. The

lar to that found in our simulations. results described above suggest that the time series of IBls
. _ _ obtained from these simulations are stochastic.
C. Stochasticity of the bursting dynamics We have carried out several tests to check whether or not

The irregular bursting shown in Fig(l) is found only for  the IBI time series are truly stochastic. We looked for corre-

random sequential updatingRSU), i.e., when the neurons 'ations in the IBI time series by calculating the autocorrela-
are updated one at a time in a random sequence. Operatiofen function

ally, one of theN neurons is selected randomly for updating, m—n
its local field is calculated, and its state variaBjds set to O C(n)= 2 (T, —?)(T __)/02 (4)
or 1 depending on the sign of the local field. This process is m-n <! en ’

repeated\ times to complete one pass. To ascertain the na-

ture of the dynamics, we also checked the time evolution of ) ) —
the network without the randomness in the updating schem@here m is the total number of IBIs in the datasef,
and the refractoriness. In these simulations, refractoriness /m=[L,T; is the average IBI, andor®=1/m= (T,
was implemented by always resetting the network to a fixed- T)2. As shown in Fig. 3, the IBls are completely uncorre-
memory and the network was updated following two differ-lated in time in all the networks. A similar absence of corre-
ent deterministic schemefixed sequential updating=SU lation has been found in the experiment of R&6] on hip-
and parallel updating(PU). pocampal slices.

In the FSU, a specific sequence for updating lthaeeu- The probability distribution of the IBIs follows a Poisson
rons is chosen randomly, and then the neuronsadsays form, P(T,)<exp(—aT,), in all the networks. Sample results
updated in that sequence. For most choices of the updafer network 1 are presented in Fig. 4, in which both the
sequence, the network remains confined to the low-activitysimulation data and the fit to a Poisson form are shown. The
attractor andS,, exhibits perfectly periodic, low-amplitude smoothening procedure we have used for low-pass filtering
oscillations. This is shown in Fig.(B). However, for certain  of the data does not allow the occurrence of IBls smaller
“special” choices of the update sequence, the network ighan about &,,=80 passes. For this reason, the Poisson dis-
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FIG. 3. Autocorrelation functio©(n) of the IBIs from six net-

works.
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T e LN =exp(—aT,), which would match the Poisson distribution of
0.3 (1] (2)] the IBIs found in our simulations. To check this, we have
~ 06 1 . carried out Monte Carlo simulations of a Poisson process
£ 04 1 1 with probability p of occurrence at each time step. In this
© o2 s . simulation, a random numbar distributed uniformly be-
0 fo< A + tween 0 and 1 is generated at each time step, and the occur-
o2l TR S rence of a “burst” is recorded if <p. Sincer is distributed
1l M uniformly between 0 and 1, the probability ofbeing less
0.8} 3] (4)] than or equal t@ is p itself. So, this Monte Carlo procedure
—~ 06 1 1 ensures that the bursts occur with probabitityOnce a burst
£ 04 . 1 occurs, the next one cannot occur during the next,2ime
© o2 . L . steps. We use this procedure to generate the same number of
0 [P — “IBIs” as in the original time series and compute their dis-
N2 e tribution function. As shown in Fig. 4, the distribution func-
l T tions obtained from the network and Poisson simulations are
0.8} ®)] (6)] essentially identical. Similar close agreements between the
—~ 06 1 1 results of the network and Poisson simulations of the behav-
£ 04 ] . ior under different control procedurésee Sec. Il F for de-
© 0.2 . . tails) provide strong support to the conclusion that the IBI
0 v For A <o time series obtained in our simulations are stochastic in na-
) P A TR ture.

-0.
0 51015202530 0 5 1015202530

n

n

A defining feature of deterministic chaos is extremely sen-
sitive dependence on initial conditions, manifested in an ex-
ponential divergence of trajectories starting from nearby
points. We have carried out a simple calculation to look for
this behavior in our IBI time series. This involves a calcula-

tribution is cut off near the origin. The value of the parametertion Of the quantity(In[d(K)]) where d(k)= Tk T
« shows large sample-to-sample variation in the range be2nd the average- - -) is over pairsi andj with d(0)=|T,
tween 8< 10~ 2 and 3x 102, The form of the distribution of — ¥;/<<n. n being a small number. A similar calculation for
the IBIs recorded in brain-slice experimeri&17,29 has the chac_>tic_ Iogisti(_: map shows an e>_<ponentia| growth of
not been reported in the literature. The data in the first returd(k)) with increasingds, and a crude estimate of the value of
maps of the IBI time series shown in Reff$7,18 indicate a  the Lyapunov exponent can be obtained Dy fitting the depen-
distribution that exhibits a sharp maximum close to the lowdence o(In[d(K)]) on k to a straight line. For our IBI time
end and decreases slowly to zero at the high end. This igeries, on the other hand, we find tiit{d(k)]) is indepen-
similar to a Poisson distribution truncated at the low end. dentof bothk andn, indicating that the IBls are independent
Our results suggest that the transition of the network fronf@ndom variables. Similar results are obtained for a two-
the low-activity state to the high-activity one is a stochasticdimensional delay embedding,
process that has a small probabiljy= 1—exp(—«) of oc-
curring at each step. For this value mfthe probability of d(0)=Ti=Tj|+|Ti 1= Tjral<n,
having two successive transitions separated by a time inter- )
val of T, units would be proportional to (&p)™ dK) =|Tisk= Ty +Tivkr 1= Tjrwal-

0.25 Here, we find thatIn[d(k)]) is independent of, and inde-
& N pendent ofk for all k>1. These observations confirm the
! etwork . . . L
02 % s Poisson stochastic nature of th§; time series and indicate that the
5 use of more sophisticated methods to calculate Lyapunov
015 g exponents from our time-series data would not be meaning-
= ful. Further evidence for the stochastic nature of the IBI time
ot 8‘_ series is obtained from the surrogate analysis described in
é‘.ﬂ Sec. V.
0.05 |- LY The behavior ofd(k) found for our IBI time series is
° “‘é@.& - similar to the observation in Ref17] that a small cluster of
() PRSP SR 1. -7 2 Y. points in the first return map of the experimentally obtained
0 500 1000 1500 ) ; ;
™ IBI time series expands rapidly and covers nearly the whole

allowed region within two iterations. Due to this rapid ex-

FIG. 4. Probability distribution of IBIs from network simulation Ppansion, conventional methods of estimating the value of the
(circles and Poisson simulatioftriangles in the absence of control largest Lyapunov exponent from time-series data could not
in network 1. The dashed line is the best fit to an exponentiabe used to analyze the experimental data. Instead, a new
(Poisson form. technique called “expansion rate analysisl'7] was used.
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1000 T T T accidental occurrences of UPO-like trajectories were found
I ] in all the six networks studied. The apparent UPOs are iden-

e a tified from trajectories in the return map that first approach a
point on the identity line T,=T,_4) along a line(stable
manifold and then diverge away along a different liun-
stable manifolgl Specifically, we searched for trajectories
that satisfy the following criteria. If the sequence of points is
marked as 1,2,3. ., then we have the following.

(1) The point 1 is away from the identity line, and the
point 2 lies close to the identity line.

(2) At least two subsequent points diverge away from
point 2 along a straight line with a negative slope with mag-
Sl MDANCS e nitude greater than unity. The intersection of this line with
0 ) o N ) the identity line is taken to be the location of the UFP.

0 200 400 600 800 1000 (3) The points on the unstable manifold alternate on the
Toa two sides of the identity linéflip-saddle criterion
(4) At least two such sequences of points, starting at dif-

FIG. 5. Recurrent UPO-like trajectories in network 1 chosen forferent times, exhibit similar trajectories near the same UFP
control. Three sequences starting at different tirftesnoted by 1) (recurrence criterion
are shown along with the calculated stable and unstable manifolds (5) The best-fit straight lines to the first points of all these
denoted by arrows. recurrent sequences intersect the identity line near the UFP.
This line, whose slope is usually close to zéitte magnitude
Qof the slope must be less than unijtglefines the stable mani-

fold.
With short sequence&@—5 points, it is not possible to
check with certainty that the sequence of points defining the
1. SIMULATIONS OF CONTROL METHODS unstable manifold diverge exponentially away from the UFP.

As discussed in the preceding section, the IBI time seried NiS condition is approximately satisfied by most of the se-
obtained from simulations of the stochastic neural networiuénces obtained with the criteria listed above. The mani-
exhibit general characteristics that are quite similar to thosolds are determined through least-square fits to the corre-
of the IBI time series obtained in brain-slice experimentssponding points in all the recurrent sequences. If the stable
[9,25]. It is, therefore, interesting to enquire whether some ofmanifold does not pass through the UFP, a straight line par-
the control results reported in R¢€] can also be reproduced allel to this line and passing through the UFP is taken as the
in simulations of the network model. We have carried outstable manifold. An example of recurrent UPO-like trajecto-
extensive simulations of the behavior of six networks underies found in network 1 is shown in Fig. 5 along with the
the application of various control methods. The results ofcomputed stable and unstable manifolds. Another example

800

400

200

This analysis did not provide any evidence of determinism i
data. This feature of the experimentally obtained IBI tim
series is clearly in agreement with our simulation results.

these simulations are described in this section. from the same network may be found in REgZ1].
After the determination of the UFPs and the correspond-
A. Apparent unstable periodic orbits ing stable and unstable manifolds, simulations of various

control methods(chaos control, periodic pacing, demand
pacing and anticontrplround one selected UFP for each of
first return maps of I1BIs from six different networks. UPOs the six networks were carried out. The chosen UFPs-anq the
of period one appear as UFPs in the first return map defineﬁIOpeS of th? mamfolds used for these control appll_cat|ons
as a plot ofT, vs T,_,. Unlike typical return maps from are summarlzed in Table 1. These_ control methqu involve
deterministic chaotic dynamics, the points in the return map&€ generation of bursts at appropriately chosen times by the
constructed from our IBI time series fill up the entire space @PPlication of an external stimulation. An external stimula-
reflecting the underlying stochastic dynamics of the network!ion was modeled in our simulations by a reduction of the
The Poisson distribution of the IBIs leads to a clustering ofinhibition strengthw from 0.6 to 0.24 for five passes.
points near the origin and the axes. A return map constructed FOr each of the control methods, we carried out simula-
from a 1320-IBI time series collected ovex3.0° passes for  tions in which 5000 bursts are generated. A statistical sum-
network 1 is shown in Fig. 5. The lack of any geometricalMary of the results of these control simulations is provided in
structure in the return maps of our IBI time series is similarTable Il. This table gives the values of the averageTBthe
to the behavior found in brain-slice experimeffisl7,1§. standard deviatiow of the IBIs, and the percentage of IBIs
Although the return maps do not have the structure exabove {T,>T*+tg,), below (T,<T*-—ts,), and near
pected for deterministic dynamics, we found many UPO-like(T* —t;,<T,<T* +1,) the selected UFP*. The percent-
trajectories which have multiple occurrences and satisfy alage (sg9 of IBls generated by applications of the control
the criteria adopted by Schifét al. [9]. Many such purely stimulation is also listed for each of the control methods.

Following the analysis of IBIs from spontaneously burst-
ing brain sliceqd9], we searched for UPO-like trajectories in
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TABLE I. The UFP (T*), the slope of the stable manifoldn¢),  control. Whenever a burst occurs, the current TRlis com-
and the slope of the unstable manifolu ) chosen for control in puted and the time at which the next burst should occur in
six networks. The percentages of IBIs above, below, and near thgrder to place the state point on the stable manifold in the
stable manlfolc{S!\/I) during chaos control are given in columns 4, . map is calculated from the equation of the stable
5, and 6, respectively. manifold. This time ist,,, ; +my(T,—T*)+T*, wheret, ,
is the time of occurrence of the last burst,&t,, ., —t,) and
m; is the slope of the stable manifold. An external stimulus is
applied at this time if no natural burst occurs before its ap-

No. T* ms Mys Above Below *tg,
SM SM of SM

1099 -0.257 —1.468 21 711 26.8  are plotted. The control clearly increases the number of IBls
937 —0.476 —1.683 0.0 65.5 345  with values close tar*. These control results are qualita-
tively similar to those reported by Schifit al. for brain
slices.

However, a close inspection of the control results shows
The applied chaos-control meth$#l,12] is a variant of that the control mechanism “works” mostly by preventing
the original technique proposed by Ott, Grebogi, and Yorkehe occurrence of natural IBIs above the stable manifold. The
[10]. In this method, also referred to as the proportional perexternal stimulus that attempts to place the state point on the
turbative feedbacKPPB method[27], artificial bursts are stable manifold almost always produces a burst. This makes

produced through timely stimulations that attempt to placeghe occurrence of bursts with,,;>my(T,—T*)+T* ex-
the state point on the stable manifold of the UPO selected foiremely rare. The occurrence of spontaneous IBIs below the

1 345 —0.041 -1.0623 0.1 55.0 44.9  plication. If a natural burst occurs prior to the application of
2 1121 -0427 -1.18 1.6 55.8 42.6  the stimulus, then the time of application of the stimulus is
3 823 0.097 -—-154 0.6 56.6 42.8 recalculated using the value of the new IBI. In Fig. 6, two
4 447 0342 —-143 7.0 30.2 62.8  sequences of IBIs with such control from networks 1 and 4
5
6

B. Chaos control

TABLE Il. Comparison of IBI statistics from six networks during no cont(NIC), chaos contro(CC),
periodic pacingPP, and demand pacin@P). The average IBI, the number of passes to generate 5000
IBlIs, and the standard deviatian of the IBIs are given in columns 3, 4, and 5, respectively. Columns 6, 7,
and 8 list the percentage of IBIs generated above, below, and near the UFP, respectively. The last column
(sg9 lists the percentage of IBIs generated by external stimuli.

No. Type Duration T o Above Below Around sgs
X 10° T* T* T*
1 NC 18.442 369 297 34.3 53.8 11.9
cC 12.575 251 100 0.1 54.4 455 38.5
PP 10.915 218 102 2.3 71.0 26.7 47.7
DP 12.322 246 99 0.1 56.1 43.8 374
2 NC 66.027 1320 1236 42.3 54.8 2.9
CcC 41.304 826 492 19.9 55.2 24.9 39.0
PP 32.075 641 397 1.7 74.5 23.8 32.7
DP 40.482 810 469 1.6 55.3 43.1 40.1
3 NC 44.16 883 816 38.2 57.2 4.6
CcC 27.561 551 290 0.6 73.1 26.3 40.0
PP 23.071 461 272 1.1 76.7 22.2 45.4
DP 27.964 559 283 0.5 59.6 39.9 36.7
4 NC 48.938 979 930 62.3 32.1 5.6
CcC 21.977 440 392 12.4 48.6 39.0 57.0
PP 17.876 358 186 7.3 48.9 43.8 50.1
DP 22.326 447 397 7.2 315 61.3 554
5 NC 47.191 944 898 28.9 68.3 2.8
CcC 35.945 719 468 19.4 71.0 9.6 24.6
PP 27.853 558 376 25 83.6 13.9 39.7
DP 34.966 699 442 2.8 67.7 29.4 26.9
6 NC 49.383 988 953 36.4 60.2 3.4
CcC 33.041 661 369 23.2 68.1 8.7 32.8
PP 25.477 510 303 0.4 78.5 21.1 49.2
DP 31.113 622 314 0.0 60.0 40.0 38.1
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stable manifold are not significantly affected by the applica-stimulus. In our simulations where the underlying dynamics
tion of the control. Consequently, the control procedureis stochastic, almost all the IBIs clustering around the fixed
works better(i.e., the fraction of IBls neal™* increasekif point value and giving the impression of successful control
T* is small and the slope of the stable manifold is close toare generated by the control stimulus. This can be seen in
zero. This is illustrated in Fig. 6 where the “quality” of Fig. 6 where the stimulus-generated IBIs and the naturally
control in network 4, for which botA™* andmg are larger occurring ones are plotted with different symbols. As empha-
than those for network see Table), is clearly found to be sized in Ref.[28], such an analysis is absolutely necessary
worse than that in network 1: the fraction of IBls nd@dris  for an unambiguous interpretation of the apparent success of
smaller, and the fraction of IBls greater tha@h is higher in  chaos control found in the brain-slice experiment. Since the
network 4(see Table Il for the values of these fractipriEhe  chaos control procedure attempts to put the system point on
results of control are also better if the average IBI in thethe stable manifold, a relevant quantity to consider is the
undisturbed network is large: this decreases the number dfaction of I1BIs found within *=tg,, of the stable manifold
spontaneous IBIs lying below the stable manifold. All theseduring the application of chaos control. Values of this quan-
characteristics of the control results may be found in thdity for the six networks are given in Table I. These values
statistical summary given in Table Il. These results are qualiare close tdslightly higher than the fractions of stimulus-
tatively similar to those reported in R¢fL2] for a stochastic generated IBIs given in Table Il. This confirms that nearly all
single-neuron model. points found near the stable manifold during chaos control
In a truly deterministic chaotic system, intermittent appli- are generated by the control stimulus.
cations of the external stimulus should lead to effective con- As indicated in Table I, a small fraction of IBls are found
trol. Once the state point is correctly placed close to thdo lie above the stable manifold even when the control is on.
stable manifold by an external stimulus, a few subsequenthis is due to rare failures of the external stimulus to gener-
points should continue to remain near the stable manifoldite a burst. Increasing the strength of the stimyis, in-
without any external intervention. The trajectory would thencreasing the amount by whiah is decreased during the ap-
deviate away, needing external intervention after some timglication of the stimulusimproves the quality of control by
to put the state point back in the vicinity of the stable mani-decreasing the number of IBIs lying above the stable mani-
fold. In our simulations, intermittent applications of the con-fold. This is analogous to the improvement in control found
trol stimulus did not produce effective control. This is con-in the brain-slice experiment when two pulses instead of one
sistent with the purely stochastic nature of the burstingvere used to generate a burst at the appropriate time.
dynamics of our model. Intermittent control applications Slutzky et al. [18] have recently reported the results of
were also unsuccessful in the brain-slice experini@htal-  applications of chaos control methods to spontaneously
though this may also be attributed to inaccuracies in the debursting hippocampal slices similar to those studied in Ref.
termination of the slope of the stable manifold from noisy[9]. One of the control methods used by them is similar to
(and possibly nonstationaryphysiological data. ours, with the difference that in their experiment, the control
If the state point remains close to the stable manifold andgtimulus to generate a burst was applied only when the dis-
approaches the UFP for some time after it has been placddnce of the state point from the selected UFP exceeded a
there by a control stimulu&@s it should in a system exhibit- suitably chosen “control radiusR.. Large values ofR.
ing deterministic chagsthen a majority of the IBIs found correspond to intermittent applications of the control stimu-
near the fixed point in the presence of control should occulus, and this method reduces to the one used by us in the
naturally rather than through applications of the externalimit of very small values ofR.. Slutzky et al. studied the
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effects of changing the value 8%, on the efficacy of control. erated by the external stimulus. This is due to spontaneous
They also kept track of the fraction of bursts generated bybursts between two successive applications of the stimulus. A
the control stimulus. They found that the quality of control, small number of IBls with values larger thart are also
measured by the variance of the IBIs generated during corfound. As noted above, these are due to occasional failures of
trol, increases af; is decreased. However, decreasiRg the stimulus in producing the required burst.
also increased the fraction of stimulus-generated IBIs, indi- These features are similar to the results of the brain-slice
cating that the improvement of control was mostly due to theexperiment[9]. However, some of the successful periodic
generation of many IBls neaf* by the external stimulus. pacing results in the brain-slice experiment, where the num-
This is similar to the results of our simulations. The values ofber of IBls belowT* are also apparently reduced, cannot be
T* and mg for the UPOs selected for control were not re- reproduced in our network simulation. Periodic pacing in the
ported in Ref[18]. It appears from the plots shown in this networks always increases the number of IBls below(see
paper that good control was achieved only wHénis close  Table Il). In fact, the amount of time required to generate a
to the lower limit of the IBI distribution and the value [of| fixed number of IBlsdecreasesthe value of the average IBI
is close to zero. As mentioned above, a very similar behaviobecomes smallgwhenever any form of control is applied to
was observed in our simulations of PPF control. Slutzkyour networks. Applications of the external stimulus to gener-
et al. have also reported the results of applications of amate bursts at appropriate times during control increases the
adaptive tracking methof29] that continuously refines the number of bursts, but the naturally occurring bursts in our
estimates off* andm, during the application of control, and stochastic model are not affected by the control. As a result,
a new protocol called “state point forcing” that helps in de- the total number of bursts in a fixed period always increases
termining the validity of fixed point estimates. Simulations during control. This is clear from the data shown in Table 1.
of these methods for our network model are planned for the\ convincing demonstration that the average IBI canirbe
near future. creasedby the application of one of these control methods in
brain-slice experiments would provide strong support to the
C. Periodic pacing claim [9,16] of deterministic behavior in such systems.

In periodic pacing, the network is stimulated at fixed in- )
tervals equal tor* irrespective of the occurrence of natural D. Demand pacing
spikes. As a result, many artificial bursts at intervals equal to In demand pacing, the network is prevented from produc-
T* are generated, and naturally occurring bursts correspondig any IBI higher than the UFP by timely applications of the
ing to IBIs larger thanT* are eliminated. Periodic pacing external stimulus. Given the occurrence of a burst at time
also produces many new IBls smaller th@h—these are the external stimulus is applied at timyet+ T* if no sponta-
due to spontaneous bursts occurring between two successiveous burst occurs before its application. This procedure is
applications of the control stimulus. essentially the same as the PPF chaos-control method de-

Two sequences of IBIs with periodic pacing from net- scribed above if the slope of the stable manifold is close to
works 1 and 4 are plotted In Fig. 6. From the density ofzero. This similarity between PPF control and demand pac-
points neaiT*, it is evident that in network 1 periodic pac- ing has been noted in a recent experimental sfud}. For
ing is less effective than chaos control in increasing the pestable manifolds of larger slope, however, demand pacing is
riodicity of the bursts. The reverse is true in network 4. Themore effective than chaos control in increasing the periodic-
quantitative differences between the results obtained for thity of the bursts. Demand pacing always works better than
two networks may be found in Table Il. These differences argeriodic pacing by eliminating some of the short IBls gener-
mainly due to differences in the slopes of the stable maniated in periodic pacing through the occurrence of spontane-
folds. As discussed in the preceding section, chaos contr@us bursts between two successive applications of the exter-
works well in network 1 because bolif and|mg| are rela-  nal stimulus. In all the networks, the number of IBIs near the
tively small. Sincgm,| is close to zero in this case, trying to fixed point in demand pacing is close to the sum of the
place the state point on the stable manifold during chaosumber of stimulus-generated bursts and the number of
control is basically the same as periodic pacing, except thagpontaneous bursts expected near the fixed point in the un-
the external stimulation is not applied if a spontaneous bursllisturbed network during the period of application of control.
occurs before its application. This eliminates the large num- The results of applications of demand pacing to networks
ber of small IBIs found in periodic pacing. In network 4, 1 and 4 are plotted in Fig. 6. The characteristics of demand
chaos control produces a large number of IBIs near the stablgacing mentioned above are evident from this figure, and
manifold, but only a small fraction of them lie ne@f be-  also from the quantitative results shown in Table Il. These
causgmg is relatively large. So, if the fraction of IBIs near results are consistent with the underlying stochastic dynam-
T* is taken to be the measure of the effectiveness of thés of the networks. Specifically, the increased effectiveness
control procedure, then periodic pacing works better tharof demand pacing over chaos control wHem| is large is
chaos control in this network. expected only if the dynamics is stochastic. In truly chaotic

It is clear from Fig. 6 that a large fraction of the IBIs dynamics, a chaos-control mechanism that makes use of the
found nearT* during periodic pacing are generated by thesaddle structure near a candidate UPOs is expected to be
external stimulus. In contrast to the behavior during chaosgjualitatively different from, and more effective than demand
control, a large number of I1BIs lower thalrt are also gen- pacing which amounts to just cutting off the IBIs above the

051908-9



B. BISWAL AND C. DASGUPTA PHYSICAL REVIEW E66, 051908 (2002

UFP. Therefore, if the bursting in brain slices were truly slope of such a repellor line is always positive and larger
deterministic, then, irrespective of the slope of the stabléhan unity. Such lines impose no upper bound on stimulus-
manifold, chaos control should always be more eﬁectivggenerated IBls. A small Bl leads to a subsequent small IBI
than demand pacing in increasing the periodicity of theinduced by the control stimulus, and a large IBI leads to a

bursts. An experiment in which the effectivenesses of thes{?rge ]??he unlefslatnatulral burst occurs prior to the applica-
two methods are compared would be very helpful in under!'oN OF the control stimulus. - .
In the absence of any clear-cut prescription for choosing

s',tar'lding the n.ature of the underlying dynamics and in eStab[he slopes of the repellor line, we have systematically stud-
lishing unambiguously the occurrence of chaos. ied the effectiveness of anticontrol for many different values
of s. We found that if the number of IBIs recorded during an
E. Anticontrol application of anticontrol is sufficiently largex(10°) to give
Anticontrol methods[30—33 use the underlying deter- reliable statistics, then the standard deviation of the IBIs dur-

S . . . .. ing anticontrol is smaller than that for the undisturbed net-
ministic dynamics to increase or preserve its complexity

) : . . . work (r,<<1) for all choices ofs. The reason for this behav-
Schiff et al. [9] tried to achieve this by applying PPF-type - is the same as that mentioned above for the result that the

control for an appropriately chosen anticontrol liffespel-  4yerage IBI obtained from our simulations in the presence of
lor” line) that passes through the selected UFP. They madgny form of control is smaller than that for the undisturbed
the ad hocchoice of the repellor line to be the mirror image network. In our stochastic networks, applications of the con-
of the unstable manifold about the identity line. It wastrol stimulus generate additional bursts, but cannot prevent
claimed that this choice effectively diverted the state pointhe occurrence of spontaneous bursts. Therefore, the number
away from the UFP and increased the variability of IBIs. Inof relatively small IBls can be increased, but the upper limit
the brain-slice experiment, anticontrol applications had lim-of the IBI-distribution cannot be extended beyond the value
ited success: only a small fraction of the attempts appearef@und in the same network without any control. However, in
to be effective in increasing the variability of the IBls. Quali- Simulations of anticontrol over relatively small periods dur-
tatively similar results were obtained by Christini and Col-1ng Which only a few hundred bursts are generated, “suc-

lins [12] in their simulations of a stochastic single-neuroncessful” anticontrol (,>1) was observed in a few runs with
model. large, negative values & This is purely due to statistical

A proper assessment of the success of anticontrol requird&/ctuations: values of, smaller than unity were obtained
a quantitative measure of its effectiveness in increasing th _he_r|1 the ﬁlmulatlo_ns Welre colntmuec_zl for I??glerd periods.
variability of the IBls. No such measure was defined in Refs.ce'lr:égret\?etn ?jSr)i(rFl)erterees,r(]atas,l”:1z?IEj<;3'rz:t?c}:$?S:1rso Aa' elicg:iggséf
[9] and[12]. We have defined two dimensionless quantities 9 - APP

that mav be used for this purpose. The first one is the rati anticontrol in brain slices for longer durations would be use-
Y purpose. Ul to determine whether the reported successes of anticon-

(rl). of the standard deylatlons of the IBIs recordec_i durl_ng ol were due to the deterministic nature of the dynamics or
anticontrol run and during a run of the same duration without

any control. Values of; greater than unity would indicate due to inadequate statistics,
y ) 19 Y While this anticontrol method cannot increase the stan-

success of anticontrol. A second quantity we have considere&iard deviation of the IBIs in our stochastic networks, it can

is the ratio () of the standard deviation and the mean of theincrease the relative variability, of the IBI distribution for

IBIs recorded during anticontrol. This quantity measures th . . .
scaled variability of the IBI distribution. Values of, ob- :Eppro'o”ate choices of the slopseof the repellor line. We

. : . ) ound that values o6 close to unity are most effective in
tained from simulations of our networks in the absence o

; roducing large values af,. Repellor lines withs slightly
any cont_rol I".a between 0'8. and 0'95’ the smaller values b above unity do not impose any upper or lower bound on the
ing obtained in networks with relatively small values of the

mean IBI (see Table . Deviations of these values from stimulus-generated IBIs, and are definitely off the manifolds.

unity, the value expected for a Poisson distribution, are du§nticontrOI with such values af produces many additional
to the smald cutoff in the IBI distribution. Substantially rtificial 1BIs of small magnitude. This decreases both the

hiah I fr- during. th licati f anticontrol Mmean value and the standard deviation of the IBIs. The
Igher values 0lr; dunng the application ot anticontrol - ¢, ey js decreased more in comparison with the latter, so

wogléj Iglféialltiﬁétss cs)gfa(l:iﬁzz. from the brescription of Schiff that the value of , is increased. Our simulations wiitlose
P P P to unity yield values of , in the range 1.2—1.6. The results

et al. [9] have negative slopes_wnh magnitude smaller thanof two such applications of anticontrol over relatively small
unity. As a result, the control stimulus attempts to generate

A Qurations are shown in Fig. 6. These plots are visibly similar
large IBI after the occurrence of a small one, and vice versg, ' -« op oo o Ref12]. We have also found that increas-

Also, stimulus-generated IBls cannot exceed the value g'Velhg the strength of the control stimulus increases the effec-

2{; tg;;(?'gég\tgvmﬁg :)r:gsrcer?petlilgr: Iflgreslgrgtr:fii(g;tsth%asﬁfﬁe 0Fveness of anticontrol_, essentially b_y G_znsL_Jrirjg that the stimu-
the repellor line ’does not have any clear justification. A dif- us prtogu_ce; t?% dfesmzd bgjlrst. Tlhlf 'S stlmlllar t?htr:je results
ferent choice was made by Christini and Colliri] who reported in Ref[9] for *double-pulse” control methods.

took the repellor line to be the mirror image of the unstable
manifold about a line passing through the UFP and perpen-
dicular to thex axis. Since the slope of the unstable manifold We have carried out Poisson simulations of all the control
is always negative with magnitude larger than unity, theprocedures described above. As mentioned in Sec. Il C, these

F. Poisson simulations

051908-10



STOCHASTIC NEURAL NETWORK MODEL F®& . .. PHYSICAL REVIEW E 66, 051908 (2002

05 . 05 —
' emand Paci
4 Chaos Control ‘ o
0.4} A 0.4}
—~03F 03F
c =
= =
A
@ o2t o2t
o ‘\
e XY . It
F S SO B ; 4
oaf ;T 011
0 P R | G S oL ] A Lode oata
0 200 400 600 800 200 400 600 800
Tn T,

FIG. 7. Probability distribution of IBIs from network simulation FIG. 9. Probability distribution of IBls from network simulation
(dotted ling and Poisson simulatiofdark trianglg during chaos (dotted ling and Poisson simulatiofdark triangle during demand
control in network 1. pacing in network 1.

simulations are based on the assumption that the transition of IV. STATISTICAL SIGNIFICANCE OF UPOS
the network to the high-activity stafee. the occurrence ofa  ag discussed in Secs. Il and IlI, simulations of our sto-

burs} is a stochastic process that has a probabfiityf oc-  chastic neural network model qualitatively reproduce all the
curring at each time step. The valuesfor the six net-  features found in the brain-slice experiment of Rej. This
works studied were computed from the results of networkypseryation raises the following important question: do the
;lmulat|ons. The add!tlonal ingredient requwed_for simulat-yesylts reported in Ref9] establish the occurrence of deter-
ing control methods is the process of generating bursts byinjstic chaos in spontaneously bursting hippocampal slices,
applying an external stimulus. This was modeled by anotheg; aiternatively, do these results reflect apparent deterministic
independent stochastic process that has a high probapility features that appear purely as a matter of chance in a sto-
of occurrence at the time of application of the external stimuchastic time series. This issue was first raised by Christini
lus. Values ofp’ (0.9<p’<1.0) were obtained from network anq Collins[12] who showed that simulations of a stochastic

simulations where we kept track of the fraction of appliedsjngle-neuron model reproduce most of the results reported
stimuli that produced bursts. in Ref.[9].

All the measurements made in the network simulations \ore recently, a number of new methods have been pro-

(the measured quantities are listed in Tables | andvire  posed for locating UPOs in experimental time-series data
repeated in our Poisson simulations. A comparison of the tW@nq for assessing their statistical significance through surro-
sets of results for each network showed good agreement i@ate analysis. Set al. [14] have proposed a method based
all cases. Such comparisons for the probability distributiorpn adynamical transformatiothat utilizes the local dynam-
of the IBIs during chaos control, periodic pacing and demandcs to enhance the probability measure about distinct UPOs
pacing in network 1 are shown in Figs. 7, 8, and 9, respecy state space. In subsequent wotls, 16, this method has
tively. These plots illustrate the close agreement between thgeen applied to analyze IBI datasets obtained from the brain-
results of network and Poisson simulations. Similar resultg)jce experiment. These studies claim to have found UPOs in
for network 6 may be found in Ref21]. These results con- 5 statistically significant number of windowed datasets.
firm the stochastic nature of the IBI time series generated igsjmilar results have been found in a recent st(iiy] of
our network model. hippocampal bursting under three different experimental
conditions. In an analysis using the same dynamical transfor-
04 mation, but a different criterion for assessing the statistical
Periodic Pacing significance of candidate UPOs, Van Quyetral. [19] have
03} reported detection of statistically significant UPOs in human
s epileptic activity. Pierson and Mog4.3] have proposed a
- [ ,"'-,‘ topological recurrencecriterion for locating UPOs in noisy
=02 ¢ "‘\‘ time-series data. Using this method in combination with sur-
H ’ i rogate analysis, Pei and Mos34| have detected statistically
01 _. P significant UPOs in the dynamics of the crayfish caudal pho-
4 i toreceptor. Using the same method, de la Petal. [35]
] have found statistically significant UPOs in ISI data obtained
00 400 600 goo from immature hippocampal networks.
T To test the reliability of these statistical methods, and to
check whether or not simulations of our model can reproduce
FIG. 8. Probability distribution of IBIs from network simulation some of the results obtained from their applications to ex-
(dotted ling and Poisson simulatiofdark triangl¢ during periodic ~ perimental data, we have used these methods to analyze the
pacing in network 1. stochastic IBI time series obtained from our network simu-
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lations. The results of these studies are described in this sec- 12 ( ), T —
‘ a 1.2 e
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A. Method of Soet al. = 4 0 2 46 8
We first consider period-1 orbits that correspond to fixed ] Al W
points in the first return map. In the method of &aal,, such o ey, e
fixed points are detected by performing the following dy- 60 (b)' I SN S
namical transformatioh14] on the IBI time serie§T,}: §0.8 N\‘ ]
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where 0 05 10 15 20
T (sec)
Tn-%—2_-|—n+l o L
sp(k)= T T +k(The1—Th). (7) FIG. 10. Statistical significance of UPQmethod of Scet al,
n+1™ 'n see Sec. IV Ain windowed datasets. The plots show histograms for

the probability distributiorp(T) (solid line) of the transformed se-
Under this transformation, most of the points in the linearries for the original dataset, and the average probability distribution
region around a fixed point* are mapped to the vicinity of () (dotted ling of the transformed series for the surrogates. Re-
T*. Therefore, a histogram of the probability distribution sults for a 512-1BI dataset and a 4096-IBI dataset are shown in
p(T) of the transformed time seri¢d,,} shows a sharp peak panels(a) and (b), respectively. Inset: Plots & (W), the fraction
at each fixed point. Spurious peaks, which depend strongl9f surrogates with maximum deviation exceedifgsee text The
on the parametek, are eliminated by averaging the distribu- maximum deviationW,,,, betweenp(T) and p(T) occurs atT
tion over a large number of random valueskodbtained as  =0.31 s{V,,.,=4.97) for(a), and atT=0.51 s {p,,,=8.11) for
k= kR whereR is a random number distributed uniformly in (b). Arrows at W,,,, indicate the statistical significance level
[-1,1], and « is a parameter chosen to ensure that the twd2(Wpay) (see Sec. IV A
terms on the right-hand side of E() have the same order
of magnitude. The statistical significance of candidate UPO#$luctuations of the distribution for an individual realization

corresponding to peaks of T) is assessed from a compari- Of the surrogates from the ensemble average were measured
son with the distribution obtained for a large number of careby
fully constructed, randomized versiorisurrogate$ of the o
original dataset. W(T) = psud T) = psud T). (8)
In the analysid15,16 of the brain-slice data using this
method, it was argued that in biological systems the parameor each surrogate, the maximum deviatiofV
eters governing the underlying dynamics are not stationary in_ max w(T)] was measured, and the fractig{W’) of sur-

time. This argument contradicts to some extent the 'nterprer'ogates with maximum deviatiow/>W' was found using a

tation of the control results reported in RES], where itwas  |546 number of surrogates. Then, the statistical significance
claimed that candidate UPOs detected from a search during g . =y :
of a candidate UPO &I* was estimated from the value of

“learning” period can be used to control the dynamics in . ==
subsequent time intervals of substantial duration. Neverthe= (W*) whereW* =p(T*) — ps,(T*). Specifically, the sta-
less, assuming the system parameters to vary slowly in timdistical confidence level for the detection of an UPO was
the IBI dataset obtained from the experiment was broken ugstimated to b¢1—=(W*)]x 100%.

into small overlapping15] or nonoverlapping16] windows We have carried out the same analysis using windowed
of sizem, which is chosen to be small enough to maintaindatasets obtained from our network simulations. We scaled
stationarity and large enough to provide adequate statisticée Bl data to match the experimental data used in the

The transformation of Eq6) was then applied to the data in analysis of Ref[15]. In that work, 1834 ISIs collected over
each window to obtain the distributiqul’) 25 min were analyzed for the detection of UPOs. In network

Using many realizations of Gaussian-scaled phasel' the same number of IBIs are generated in 685409 passes.

. . We, therefore, scaled our time unit by setting one pass equal
shuffled surrogate$36] (random shuffling that approxi- )
mately preserve the power spectiuaf the original data in to 0.0022 s. In our analysis, we used 100 surrogates, took

each window, the statistical probability that the observed< = -0, and averaged the dist_ribution over 50_0 values.of the
. - . random numbeR. Representative results of this analysis are
peaks in the transformed(T) could be found in random

: L shown in Fig. 10. We found that this method successfully
surrogates was estimated. For each realization of the surr

te data. th q lied t lculat t(r’é'ects the UPO-like trajectories found in the first return
gate dala, the same procedure was applied to caiculate aps of the IBI time series obtained from our network simu-

distributionps,,(T). Then, from this  collection ofpsul(T)},  lationsonly if the dataset used in the analysis is sufficiently
the ensemble-averaged distributigq,(T) was obtained. large (m=2048). Our results for a dataset with=4096,
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TABLE III. Statistical significance of UPOs in windowed ment was performed in Refl15]. We have carried out the
datasets from ten networks, according to the method obtSal.  same analysis using simulation data obtained for network 1.
(see Sec. IV A The number of IBls in each nonoverlapping win- |n our analysis, we scaled the IBI data to match the time
dow and the percentage of networks showing statistically significant.1e of the experiment, used parameter values identical to

UPQOs are given in columns 1 and 2, respectively. The total numbe[rhoSe in Ref[15] («x=5.0, 500 values oR, and 100 surro-
of windows used in the analysis and the percentage of windows o '

showing statistically significant UPOs are given in columns 3 anogate$’ and qonSIQered a Iarge numb_er of overlapping and
4, respectively. nonoverlapping windows of different size. The results of this

analysis are very similar to those described above. For ex-
Window size % significant No. of windows % significant ample, we found “statistically significant” UPOs in 75 out of
1024 nonoverlapping 32-1BI windows. The valuesfafere

networks windows
found to vary between 1.6% and 9.4% as the window Bize
32 80 544 8.82 was varied between 32 and 1024, and no UPO was found for
64 100 272 10.29 m=2048. In Ref[15], the results of the surrogate analysis
128 50 136 8.82 for the detection UPOs in overlapping 128-IBI windows

were presented in the form of a gray-scale plot from which it
is difficult to extract quantitative information such as the

obtained from simulations of network 1, are shown in Fig_value off. For this reason, we could not compare our results

. A directly with those of Ref{15].
10@)' The maximum value of the deviatiohV= p(T2 The method of Ref[14] can be extendefll5] to the de-

—psulT) is found to beWp,,=8.11, which occurs al'  tection of orbits of period higher than 1. Using this method,
=0.51. However, the fraction of surrogates with maximums et al. [16] have detected statistically significant UPOs of
deviation exceeding this value is fairly larg&(Wma  higher period in intracellular data obtained from brain slices.
=0.39, as shown by the arrow in the inset of Fig(0This  sjnce intracellular recordings reflect a combination of collec-
means that this candidate UPO should not be considered Stme and Sing|e_neuron dynamics] our network with binary
tistically significant at the confidence level of 95% used inpeyrons is not appropriate for the modeling of such data.
the analysis of Re{.16]. In a similar analysis carried out for Nevertheless, we have carried out a simple analysis for the
35 datasets wittm=2048, we found a statistically signifi- detection of period-2 orbits in the simulation data for net-
cant UPO in only one dataset with=2048. Thus, this sur- \ork 1. Since a period-2 orbit corresponds to a fixed point of
rogate analysis recognizes our IBI time series to be stochashe second iterate of the dynamics, we considered the time
tic if a sufficiently large datasgt is used in the analy3|§. seriesT;, T3, Ts, ... . Tme1 (T2, T4, T ... . Trm) consisting

However, the same analysis leads to false detections qff only the odd-numberetéven-numberederms in am-1BI
“statistipally signific'ant" (a? the 95% confidence Ie_\)el window (m even of the original time series, in our analysis
UPOs in a substantial fraction of windowed dataset®iis  for the detection of period-2 orbits. The method described
small. The results for a window witln=>512, obtained from  apove for the detection of statistically significant fixed points
simulations of network 1 and showing the presence of a “stayas then applied separately to the odd- and even-numbered
tistically significant” UPO, are plotted in Fig. 18). In this  datasets. If a period-2 orbit is present in théBI window of
case, the probability of finding the peakVf,,,=4.97 atT  the original dataset, then this calculation should show two
=0.31) in the surrogates is very low, around 1%, as indi-statistically significant fixed points in both the odd- and
cated by the arrow in the inset of the figure, leading to theeven-numbered datasets, and the locations of these fixed
false identification of a statistically significant UPO at 95% points should be nearly the same in the two datasets. We
confidence level. A similar plot for m= 128 dataset may be have confirmed that this method succeeds in detecting
found in Ref.[21]. period-2 UPQOs in the Henon map.

We have carried out a systematic analysis for different Since the IBIs in our stochastic time series are indepen-
values ofm and observed that the criteria adopted in Refsdent random variables, the time series obtained by retaining
[15] and[16] fail to recognize our IBI datasets as stochasticonly even- or odd-numbered terms are statistically identical
in a significant fraction of trials imis small. Results of this to the original one. We, therefore, expect that a period-1
analysis, carried out for 1Bl datasets collected from ten netanalysis for the even- and odd-numbered datasets would
works, are summarized in Table Ill. The total number ofyield results that are very similar to those obtained in our
nonoverlapping windows used in the analysis for each winanalysis for period-1 orbits in the original dataset. In our
dow sizem is listed in the third column of the table. The original period-1 analysis, we found very few windows with
second column lists the percentage of networks with at leaghore than one statistically significant UPOs. Further, since
one window with a statistically significant UPO at 95% con-the even- and odd-numbered datasets are statistically inde-
fidence level, and the fourth column lists the percenfagle  pendent, it is highly improbable that both of them would
windows(combined from all networKswith statistically sig- exhibit UPOs at approximately the same locations. So, the
nificant UPOs. These results are quite similar to those reprobability that the even- and odd-numbered datasets would
ported in Ref[16] for extracellular brain-slice data at rela- each exhibit two statistically significant UPOs at approxi-
tively low potassium levels. mately the same locations is expected to be very small for

A similar analysis for a two-dimensional delay embeddingour stochastic time series. The results of our analysis are
of the IBI time series obtained from the brain-slice experi-consistent with this expectation. In our analysis of a 32 768-
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IBI time series from network 1 with window sizes varying esting to check this possibility by carrying out a surrogate
from 128 to 8192, we did not find any window in which the analysis of the brain-slice data using windows of larger size.
criteria mentioned above for the detection of period-2 orbitsA reduction of the values dfwith increasingm would sug-
were satisfied. As expected, the fractioof windows show-  gest stochastic behavior. However, a similar trend would also
ing statistically significant period-1 orbits was approximatelybe found if the dynamics of brain slices is nonstationary. So,
the same for even- and odd-numbered datasets, and thfswould be difficult to distinguish between stochasticity and
number was close to that obtained in our original period-1nonstationarity from an analysis of this kind. This appears to
analysis. However, very few windows showed two period-10€ @ drawback of this method of detecting UPOs in experi-
orbits, and the results obtained for the even-numbered daf§ental time-series data. Another possible source of insuffi-
from a particular window did not match the results for the Cient statistics in the analysjd6] of the brain-slice data is

odd-numbered data from the same window. These resuli&€ refatively small numbefbetween 33 and 71of win-
confirm the stochastic nature of our IBI time series. It woulddows. Our studies show that the difference between the cal-

be interesting to carry out a similar analysis for the brain-culated and expected values of the fractioof windows
slice data. showing statistically significant UPOs decreases as the num-

In Ref.[16], the values of obtained from the analysis of Per of windows used in the analysis is increased.
intracellular data are found to be significantly higher than A recent study{17] has reported large values bf(be-
those calculated from the data obtained from extracellulafveen 12.5% and 42.1ptobtained from analysis of win-
recordings. This may be due to the following reason. Thelowed bram—slllce data. In th.IS work, 1B d.a.ta were re+corded
extracellular data reflect the collective dynamics of the nettnder thzrfze different experimental conditions: hig-],
work, whereas intracellular recordings can resolve thdoW-[Mg“"], and the presence of GABAreceptor antago-
“spikes” that occur during the bursting of the neuron from Nists. The method of Set al. [15] with a two-dimensional
which the recordings are made. Therefore, extracellular redélay embedding was applied to overlapping 256-IBI win-
cordings provide information about the times of occurrenceélows. The reported values of the fraction of experiments
of population bursts, while the time series obtained fromShowing at least one window with a statistically significant
intracellular recordings is one of interspike intervéiSls), ~UPO are similar to those obtained in our simulations. How-
which reflect a combination of collective and single-neuron€Ver. the values of are considerably larger. Thez statistical
dynamics. This difference is clear from the characteristicSignificance of the results obtained in the 1pMg="] and
time scale$16] of these two kinds of data: the typical IBI in GABAx-antagonist experiments is questionable because a
the extracellular data is of the order of 1 s, whereas thémall number(16 and 19, respectivelyof windows were
typical ISI in the intracellular data is much smaller, of the Used in these experiments. In a dataset of 256 nonoverlap-
order of 0.05 s. Given these facts, the larger valueg of Ping 32-1Bl windows obtained from simulations of network
obtained in the analysis of the intracellular data may be inl. we found two separate 19-window and 16-window seg-
terpreted as evidence for determinism in the spiking dynamtments for which the values dfare 42.1% and 31.3%, re-
ics of individual neurons. This interpretation is supported bySPectively, although the value 6bobtained for the full 256-
the results of de la Pridet al.[35], who carried out a careful Window dataset is much small€t0.5%. Short segments of
surrogate analysis of intracellular data recorded from imma=-20 windows with similar values of were also found in
ture hippocampal networks. They found that the IBIs in theirother datasets. Thus, our model can produce such large val-
time series are purely stochastic, whereas the spikes th&gs off if a small number of windows is considered. How-
form the intrinsic structure of individual bursts show evi- €Ver, we did not find any segment of 60 or more windows for
dence for deterministic dynamics. These results suggest thithich the value off is more than about 15%. So, it is un-
determinism and stochasticity need not be mutua"yhkely that our model would reproduce the period-1 result of
exclusive—the same system may show both kinds of dynamRef. [17] for high{K™] (f=29% for 62 window$ and the
ics at different levels and time scales. The dynamics of oufesult of Ref.[16] for 10.5 mM K" (f=21% for 67 win-
networks illustrates the same point: the time evolution of ourdows. More data to ascertain the statistical significance of
network in the low- and high-activity states is mostly deter-these experimental results would be very useful.
ministic, whereas transitions between these two states are
stochastic.

Since the confidence level for the detection of statistically
significant UPOs was set at 95% in our calculations, values Van Quyenet al. [19] used a similar method to analyze
of f for the stochastic IBI data obtained from simulations of ISI data obtained from human epileptic activity. We have
our network model are expected to be near 5%. Our resultsarried out the same analysis for our simulation data. To
for datasets withm=2048 are consistent with this expecta- repeat their method as closely as possible, the IBI data from
tion. The significantly higher values 6fnear 10%, as shown network 1 were rescaled so that the range over which the
in Table Ill) obtained from our analysis of windowed IBls vary remains approximately the same as that in the ex-
datasets withm=128 must then be attributed to insufficient perimental data. The range of the experimental data is about
sampling. The similarity between our results and those re250 ms, whereas that for the IBI data from network 1 is
ported in Ref[16] for the extracellular brain-slice data sug- about 1000 passes. So, one pass in the network dynamics
gests that the relatively large valuesf@btained in Ref[16]  was assumed to be equal to 0.25 ms. Other parameters used
may also be due to insufficient sampling. It would be inter-in our analysis, such as bin sizes for histograms, the radius of

B. Method of Van Quyenet al.
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% 001 - FIG. 12. Statistical significance of candidate UPOs near the
2 % 005 o1 o1 o0z oz peaks in Fig. 1(d). The solid line in panefb) shows the histogram

= Th (sec) of p(T) and the dashed line shows the averagpQf(T) obtained

from 39 surrogates. The upper pag&l shows the degree of statis-
FIG. 11. Probability of recurrence of IBIs, according to the tical confidence in the detection of UPOs near the location of the
method of van Quyert al. (see Sec. IV B Panel(a): 1024 IBIs  Peaks. The confidence level is defined as 160P)% with P de-
(T,) from network 1, rescaled to match the time scale of the extermined from a Monte Carlo tepEq. (9)].
periment. Panglb): Distribution of the IBIs. Pane(c): Return map
with clustering of points(recurrence along the identity line, ~generate surrogates of type Il in RgL9].

marked with circles of radius 8 ms. Parié): the probability den- (2) Random shuffleSimple random shuffling of the IBI

sity of the points along the diagonal. dataset. This maintains the distribution but destroys correla-
tions.

circles on the identity lingsee below and the number of ~ (3) Poisson simulationSurrogate datasets generated from

surrogates, were maintained at the values used by Van Quyéimulations of a Poisson process, as described in Sec. II.

et al. The transformation of Eq6), with k=5 and 500 values

We used a dataset witth=1024 IBlIs (this number is 0f R, was then applied to the original dataset and the surro-
close to 1062, the number of points in the dataset used in thgates, and the probability distributiqr{T) for the original
analysis of Ref[19]) obtained from simulations of network §ata and the distributions.,,(T) for each of the surrogates
1 in our analysis. The IBI datas¢T .}, n=1.2,...1024, \yere calculated. Following Ref19], we considered 39 dif-
used in our analysis and a histogr&in size= 5ms of the  ferent realizations of each type of surrogate data. The statis-

diSt“bUt:jO” of t?ﬁb'lBls are sho(\j/\_/n i."t‘) Figs. (bhl a;]n_d (111#’) tical significance of a candidate UPO corresponding to a
Our IBI data exhibit a Poisson distribution which is different peak ofp('T) atT=T* was estimated by a one-tailed Monte

gom _the near_ly Gagsslan dlstrlbu_uon found in Rdf]. The Carlo tes{19]:
ensity of points within a small circle of radius 8 ms around
a pointT, on the diagonal line in the return map provides a
crude measure of the probability of successive IBIs to remain o, _ [number of caseqps, T*)=p(T*)}]+1
near the samd,, [19]. A plot of this density(probability of (number of surrogates- 1
recurrencgas a function ofT, is shown in Fig. 14d). Five _ _ ]
main peaks in the recurrence probability, Bt=0.027 s, Van Quyenetal. considered peaks witP=0.025, i.e.,
T,=0.045 5,T5=0.06 5,T,=0.087 s, ands=0.125 s, are p§ur(T*) < p(T*) for all 39 surrogates, to be statistically
found. The locations of these peaks in the return map aré&ignificant. .
indicated by circles in Fig. 4t). This inhomogeneous clus- ~ The results of our analysis for surrogates of type 1 are
tering of points in the return map is qualitatively similar to Plotted in Fig. 12. The lower panel shows histograms of
that observed in Ref19]. Therefore, the interpretatidd9]  p(T) and the average ¢fs,(T). The upper panel shows the
of this clustering as a significant indication of correlation of degree of statistical confidence in the detection of UPOs.
successive IBls may not be correct. This is defined as 100(2P)%. This analysis finds the

Since our IBIs follow a Poisson distribution, we could not peaks atTs to be statistically significant according to the
use one of the methods used in REF9] to construct the criterion (97.5% confidence leveladopted by Van Quyen
surrogate datasets. We considered three types of random set-al. for all three types of surrogates. It is important to note
rogates that preserve the distribution of the IBIs. These are abat the remaining four peaks are found to be spurious in
follows. spite of the high weightage of these peaks in Figdiand

(1) Gaussian-scaled phase-shuffle [3Bandom shuffling large clustering of points in this region of the return map
of the dataset in a manner that approximately preserves tH&ig. 11(c)]. In the surrogate analysis, peaksTat 0.125 s,
power spectrum. This is the same as the method used ®1875 s for surrogate type IT=0.015 s, 0.125 s, 0.1875 s,

(€)
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0.3 , = , . —— TABLE IV. Results of surrogate analysis of IBl datasets from
& - T network 1, using the topological recurrence criterisee Sec.
0251 N\ = - . " IV C). Columns 1-7 list, respectively, the size of the dataset

. (number of IBIg, the number of Gaussian-scaled phase-shuffled
02+

surrogates used in the analysis, the numbef UPO-like trajecto-
; ries (encountersfound in the original dataset, the average number
e 015 (Ng) of encounters found in the surrogates, the standard deviation
o of the number of encounters found in the surrogates, the statis-
0.1 tical measur&K = (N—(Ng))/ o5, and the maximum valull,,, of
the number of encounters found in the surrogates.
0.05
g m No. of surrogates N (Ng) o K Nmax
000 005 01 015 02 025 03 64 100 1 056 082 054 3
T, 128 100 2 1.34 1.02 0.65 4
256 100 2 241 172 —-0.24 7
FIG. 13. Detection of UPO-like trajectories around the “statis- 512 100 3 429 207 -062 10
tically significant” UFP atT5;=0.125 s(see Fig. 12 1024 100 8 852 3.18 —-0.16 16
2048 100 18 16.87 3.97 0.28 25
0.21 s for surrogate type 2 afid=0.015s, 0.125 s, 0.21 s for 100 35 3472 644 004 53

surrogate type 3 were found to be statistically significant at

97.5% confidence level. The peaks Bt0.1875 s,0.21 s,

found to be statistically significant for two of the three types

of surrogates, are probably irrelevant, as they are in the tail ) _ _ _ ) o

of the distribution and no clustering of points on the identity depart at successively increasing distances. The third point is

line in the return magFig. 11(c)] is found around these two Ccommon to both sequences.

points. Level 1.A straight-line fit to the three approaching points
Following Ref.[19], we further examined the significance must have a slopms with —1<mgs<0 and a straight-line fit

of the apparent UPO &t by looking for recurrent UPO-like to the three departing points must have a slopg with

trajectories around this point in the first return map. As—oo<m,<-1.

shown in Fig. 13, such trajectories are indeed present in the Level 2.The distance of the point of intersection of these

IBI dataset. The “recurrent UPO” nedrs has a stable mani- two straight lines from the identity line must be smaller than

fold, y=0.173%+0.1015, and an unstable manifold, half of the mean of the distances of the five points in the

y=—1.4x+0.2978. These are indicated in the figure byapproaching and departing sequences.

lines with arrows. We have analyzed IBI datasets from ten networks for “en-
Surprisingly, this analysis fails to reject all UPO-like tra- counters” that satisfy the criteria mentioned above. Nete

jectories in our stochastic IBI dataset as spurious. Rather, thge number of encounters detected for a dataset. Using the

results arequantitativelysimilar to those of Ref[19]. This  game criteria, encounters are searched for in 100 Gaussian-

clearly shows that the methods and criteria used by Vanaieq phase-shuffled surrogates of the original dataset.

Quyenet al. are not completely reliable for identifying true Then, the statistical measuie= (N— (N))/ o is computed,

ﬂph%;;:zrﬁgr?i’csgg:ﬁi?f tr::z aﬁg?rsgtrggo_?hfgﬁgg é)y f)hs?_r\]/qvherems) is the mean and; is the standard deviation of
brep y may . P 9§e number of encounters found in the surrogate datasets. For

8192 100 80 7267 873 0.84 96

tive results obtained in this analysis may be due to the smal . "y - o
size of the dataset. When a larger dataset containing 81 aussian statistic& =2 represents a st_atlsncally_sugmﬂcant
IBls from the same network simulation was analyzed, sig- etection of the presence of UPOs with a confidence level

nificantly different results with no prominent peaks in the 9réater than 95%.

distribution p(T) were obtained. The use of a small number This surrogate analysis successfully identifies all the IBI

of surrogates may be another reason for the failure of thi%?tais:ts ;;\tﬁﬁggﬁ] Iesr}g';]r;fsiggonin Ltjhpeotgnar:gtwng:kfsoiijto_lc_:ﬂgs-
method to identify our dataset as stochastic. v Y slg : Co
value ofK is always close to zero and sometimes negative

for large datasets. For a few datasets of small length (
=<1024), values oK greater than 1 are found, but they are
In this method 13,34, the number of UPO-like trajecto- not statistically significant at the 95% confidence level. For
ries in the first return map of the original dataset is computecome of the datasets, we also calculated the maximum value,
and compared with the values of the same quantity obtainel,,,,, of the number of encounters found in the surrogates.
for surrogates of the original dataset. The following criterialn all these cases, the number of encounkéis the original
are used for identifying UPO-like trajectories. dataset was found to be smaller thidp,,,. Typical results
Level 0.There must be three sequential points that ap-obtained for network 1 are shown in Table IV. Similar results
proach the identity line at successively decreasing perperwere obtained in an analysis of datasets obtained from Pois-
dicular distances, followed by three sequential points thason simulations.

C. Topological recurrence criterion
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We have also carried out a systematic analysis of the penreurons is not expected to be present in sinchitro sys-
centagef of windows showing statistically significant UPOs tems. However, this may not be ruled outiinvivo systems,
according to this criterion. Using a dataset with 32 768 IBIswhere the region of bursting activity continuously receives
obtained from simulations of network 1, we found that theinputs from many other regions of the living brdid7].
values off for different window sizes (64m=2048) lie There exist other results that support the conclusion that
between 0 and 6.3. These results are consistent with the etie bursting dynamics of brain slices is stochastic. The spon-
pectation that about 5% of the windows of our stochastic IBltaneous bursting behavior of rat hippocampal slices, pre-
data should show statistically significant UPOs at 95% conpared in exactly the same way as the ones studied in the
fidence level. experiment of Schifiet al. [9], were tested for signatures of

We, therefore, conclude that this method correctly identi-determinism in Ref[25]. Three different tests were con-
fies the datasets from our network and Poisson simulations akicted for each of six slices. Out of the 18 tests, only one
stochastic. However, we were surprised to find that thisshowed a statistically significant positive signature of deter-
method also identifies certain datasets of small length, germinism. In intracellular recordings from immature hippoc-
erated from the logistic map in the chaotic regime, as stoampal network$35], the IBIs were found to be purely ran-
chastic. For example, this method showed the presence diom, following a Poisson distribution. Slutzley al.[17] did
statistically significant UPOs in only 5 of 32 datasets ofnot find any evidence of determinism in their “expansion
length 1024 generated from the logistic map wétk3.99.  rate analysis” of IBI data from hippocampal slices. A physi-
This observation argues against a complete reliability of thislogically realistic computer modgB8] of synchronized epi-
method. If the probability that a deterministic system visits|eptiform bursts induced by high potassium concentration in
the neighborhood of a particular UPO during the time spanat hippocampal slices had to include stochasticity in the
of the dataset being analyzed is comparable to or smallegym of spontaneous excitatory postsynaptic potentials mod-
than the probability of purely accidental appearance of UPOggq by an independent Poisson process for each pyramidal
like trajectories in a surrogate of the original dataset, theng) This is similar to the behavior found in our simulations

ﬂ;l's rtr)ethsqd W(#:Id Wr%n%l.ﬁ{t'de?t'f}é tTe or_|g_|ntfdl dat‘:‘ as Sftqt'where the presence of stochasticity in the updating process is
chastic. Since the probability of a deterministic system visi “necessary for generating irregular IBIs.

ing the neighborhood of a UPO can, in general, be quite Our work, however, does not rule out the possibility that

small (the logistic map is an example of thishis method the bursting behavior in brain slices is a manifestation of

would not work in all cases. However, the error that this S . .
method would produce in such cases is in a direction that igjetermmlsnc chaos. The demonstration that our stochastic

opposite to that of the other methods of surrogate data anal)WOdel reproduces the experimentally observed behavior does

sis we have considered. This method may identify a deter?0t imply that other, possibly deterministic, models would
ministic time series as a stochastic one, but it is unlikely tg"0t be equallyor morg successful in describing the experi-

identify a stochastic time series as a deterministic one. Thenental results. Our systematic analysis of the stochastic IBI
other methods we have considered lead to (ineorrec) data obtained from simulations of our network model points

conclusion that our stochastic IBI series has some charactepUt several signatures of stochastic dynamics in the control

istics of a deterministic one. behavior and in the results of surrogate analysis for the sta-
tistical significance of UPOs. These signatures have been
V. SUMMARY AND DISCUSSION discussed in detail in Secs. Il and IV. It would be interesting

to look for these signatures in brain-slice experiments. Such

The main result of our investigation is the demonstrationinvestigations would be very helpful in establishing the true
that simulations of our neural network model reproduce moshature of the collective dynamics of brain slices.
of the features found in brain-slice experimelgslg], and in In our simulations, applications of external stimuli during
surrogate analysigl5—-17 of the data obtained from these control procedures do not alter the parametstgh as syn-
experiments. This result suggests that our model is an appraptic strengths, the relative strength of inhibition and time
priate one for describing spontaneous population bursting idelays that govern the network dynamics. This may not be
hippocampal slices. We have also shown that the variabilityrue in networks of biological neurons. There are reasons to
of the IBIs in our network model is purely stochastic in ori- believe that repeated external stimulation causes permanent
gin. This casts serious doubt on the conclusions reached ithanges in the connectivity pattern of neuronal networks
Refs.[9,15—-1§ about signatures of deterministic chaos inthrough synaptic plasticity. The phenomenon of kindling
the underlying dynamics of brain slices. Rather, our work{22], for which the model studied here was originally devel-
strongly suggests that the bursting dynamics is well deeoped[20], is a well-known example of changes in network
scribed by “bistability” with stochastic transition between a properties caused by repeated external stimulation. Frequent
low-activity (norma) attractor and a high-activitiepileptio  stimulations may also alter the dynamics of biological net-
attractor of the underlying neuronal network. The stochasticworks by making the neurons fatigued or refractory. Evi-
ity of the IBIs in our simulations is a consequence of the usalence for stimulation-induced changes in network properties
of random sequential updating. We believe that this updatingnay be found in Ref[18]. Any interpretation of the results
scheme is the most “physical” one for describing the behav-of brain-slice experiments must take into account the possi-
ior of brain slices, because any external “clocklike” mecha- bility of such changes. These changes may also account for
nism that may synchronize or order in time the firing of thesome of the differences between the results of our network
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simulation and those of brain-slice experiments. analysis are required for unambiguously establishing signa-
Results of our surrogate analysis of 1Bl datasets for detertures of deterministic chaos in experimental time-series data.

mining the statistical significance of UPO-like trajectories

found in these purely stochastic time series cast serious ACKNOWLEDGMENTS
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