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Stochastic neural network model for spontaneous bursting in hippocampal slices
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A biologically plausible, stochastic, neural network model that exhibits spontaneous transitions between a
low-activity ~normal! state and a high-activity~epileptic! state is studied by computer simulation. Brief excur-
sions of the network to the high-activity state lead to spontaneous population bursting similar to the behavior
observed in hippocampal slices bathed in a high-potassium medium. Although the variability of interburst
intervals in this model is due to stochasticity, first return maps of successive interburst intervals show trajec-
tories that resemble the behavior expected near unstable periodic orbits~UPOs! of systems exhibiting deter-
ministic chaos. Simulations of the effects of the application of chaos control, periodic pacing, and anticontrol
to the network model yield results that are qualitatively similar to those obtained in experiments on hippo-
campal slices. Estimation of the statistical significance of UPOs through surrogate data analysis also leads to
results that resemble those of similar analysis of data obtained from slice experiments and human epileptic
activity. These results suggest that spontaneous population bursting in hippocampal slices may be a manifes-
tation of stochastic bistable dynamics, rather than of deterministic chaos. Our results also question the reli-
ability of some of the recently proposed, UPO-based, statistical methods for detecting determinism and chaos
in experimental time-series data.
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I. INTRODUCTION

With the development of many new techniques of nonl
ear time-series analysis@1#, a number of recent studies hav
attempted to understand brain dynamics@2# in the context of
deterministic chaos@3#. Experimental studies on norma
brain activity @4# and epilepsy@5# have looked for signature
of chaos. New hypotheses@6,7# have been proposed for po
sible roles of chaos in the functioning of the brain. A co
vincing demonstration of the occurrence of determinis
chaos in brain dynamics is of fundamental importance
understanding the collective behavior of neuronal netwo
in the brain. It may also lead to the possibility of short-te
prediction and control, with potentially important medic
applications.

Due to the large number of neurons involved in any s
cific brain function, the underlying dynamics is inheren
high dimensional. This makes reliable detection of lo
dimensional chaos in brain signals a formidable ta
Datasets from physiological systems are often inadequa
small, nonstationary, and contaminated with noise, pos
severe problems for a statistically reliable time-series an
sis. Though a number of recent studies have reported
detection of low-dimensional chaos through time-ser
analysis of brain signals, experts often remain skept
about such claims@8#.

The results of anin vitro experiment of Schiffet al. @9# on
spontaneous population bursting in rat hippocampal sl
bathed in a medium with high potassium concentration h
attracted much attention in this context. In this work, t
presence of unstable periodic orbits~UPOs! in the dynamics
of the neuronal network is inferred from an analysis of t
first return map of successive interburst intervals~IBIs!.
1063-651X/2002/66~5!/051908~18!/$20.00 66 0519
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Since UPOs are known to be embedded in typical cha
attractors, the presence of UPO-like trajectories suggests
occurrence of deterministic chaos. Then a variant of a ch
control technique proposed by Ott, Grebogi and Yorke@10# is
used to attempt to make the IBIs more uniform. Applicati
of this technique is found to make the bursts more period
These observations are interpreted as evidence for deter
istic chaos in the neuronal population bursting behavior. R
sults of periodic pacing and the application of an ‘‘antico
trol’’ method designed to make the IBIs more irregular a
also reported. Since the spontaneous bursting observe
this in vitro experiment exhibits many similarities with inte
ictal spikes in human epilepsy, it is suggested that hum
epileptic activity may also be chaotic and therefore amena
to methods of chaos control and anticontrol. The possibi
of application of these methods in the treatment of hum
epilepsy has attracted wide attention@11#.

Some of the methodology and conclusions of the bra
slice experiment have been questioned by Christini and C
lins @12# who have shown that the method of chaos cont
used by Schiffet al. works equally well in some simplesto-
chasticsystems. These authors consider the effects of a
tive noise on the behavior of the FitzHugh-Nagumo eq
tions which describe a single spiking neuron. The prese
of the noise causes the interspike interval~ISI! to be irregu-
lar. The first return map of successive ISIs shows evide
for the existence of~apparent! unstable fixed points, and th
application of the chaos control method makes the ISIs m
regular. The qualitative behavior found in this simple syst
is similar to that found in the experiment of Schiffet al.This
work casts doubt on the interpretation of the results of
brain-slice experiment as evidence for the occurrence of
terministic chaos.
©2002 The American Physical Society08-1
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More recently, several surrogate methods@13,14# to assess
the statistical significance of UPOs detected from time-se
analysis have been proposed. Applications of some of th
methods to the time-series data of the brain-slice experim
claim @15,16# to have reestablished the original conclusion
Schiff et al. on the existence of deterministic chaos in t
bursting dynamics of hippocampal slices. Results simila
those in Refs.@9# and @16# have been reported@17,18# re-
cently for hippocampal slices studied under three differ
experimental conditions@high potassium, zero magnesium
and in the presence ofg-amino butyric acid (GABAA)-
receptor antagonists#. A similar conclusion about the occu
rence of chaos in epileptic brain activity has also be
reached from a surrogate analysis@19# of time-series data
recorded from a human subject.

In this paper, we address the issue of whether or not
spontaneous population bursts found in brain-slice prep
tions and analogous interictal spikes in the human epile
brain are manifestations of deterministic chaos. Our w
involves extensive simulations of an existing neural netw
model for focal epilepsy@20#. This network exhibits a low-
activity ~normal! attractor and a high-activity~epileptic! one.
Brief excursions of the network to the high-activity state
the absence of any external stimulus appear as spontan
bursts analogous to those observed in the brain-slice ex
ment. In our model, however, the irregularity of the IBIs
strictly a consequence of stochasticity arising from the r
domness of the sequence in which the neurons are upd
The network model and its bursting dynamics are descri
in Sec. II.

Although the variability of the IBIs in our network mode
is a consequence of stochasticity, we find trajectories
may be interpreted as evidence for the presence of~apparent!
UPOs@unstable fixed points~UFPs! in the first return map#.
This allows us to apply the methods of chaos control, p
odic pacing, and anticontrol considered by Schiffet al. to our
stochastic neural network model. We have also studied
effects of demand pacing on the network dynamics. Res
of our simulations of the effects of these control methods
described in detail in Sec. III. These results are found to
quite similar to those obtained in brain-slice experiments

Section IV contains the results of surrogate analysis
the statistical significance of the UPO-like trajectories fou
in the IBI datasets. Three different methods are considere
our analysis. These methods include the ones used rec
to claim evidence for the presence of statistically signific
UPOs in time-series data obtained from brain-slice exp
ments@16,17# and from human epileptic activity@19#. Appli-
cations of these methods to the IBI time series obtained f
simulations of our stochastic neural network model yield
sults that are similar to some of those reported in Re
@16,17,19#.

Thus, our stochastic neural network model with bista
dynamics reproduces most of the results obtained in br
slice experiments. This result casts doubt on the interpr
tion of the experimental data as evidence for determini
chaos, and suggests that epileptic brain activity may b
manifestation of stochastic bistability. Our work also que
tions the reliability of some of the UPO-based statisti
05190
s
se
nt
f

o

t

n

e
a-
ic
k
k

ous
ri-

-
ed.
d

at

i-

e
lts
e
e

r
d
in
tly
t
i-

m
-
s.

e
n-
a-
ic
a
-
l

methods used in recent studies@16,17,19# to infer the pres-
ence of determinism and chaos in experimental time-se
data. A summary of our main results and conclusions is p
sented in Sec. V. Some of the results reported here w
summarized in a recent Letter@21#.

II. THE NEURAL NETWORK MODEL
AND ITS DYNAMICS

In this section, we define the neural network model us
in our simulations and describe its bursting dynamics. T
model was first proposed by Mehta, Dasgupta, and Ullal@20#
for describing the process of ‘‘kindling’’@22# of focal epi-
lepsy. Kindling is a phenomenon in which a part of the bra
is externally stimulated, either through electric pulses
through chemicals, to produce spontaneous epileptic acti
It is believed that kindling provides a good animal model f
the development of an understanding of epilepsy in the m
malian brain. In the present work, we have used kind
networks to model spontaneous population bursting in h
pocampal slices and interictal spikes in human epilepsy.

A. The model

The network consists ofN McCulloch-Pitts~binary! neu-
rons$Si%, i 51,2, . . . ,N, each of which is excitatory and ca
take the two values 0 and 1, representing low and high fir
rates, respectively. The inhibitory neurons are collectiv
modeled by a background inhibition, which is assumed to
proportional to the number of active excitatory neurons. O
model with binary neurons is clearly inappropriate for d
scribing phenomena that depend crucially on the deta
biophysical properties of individual neurons. However, su
models are expected@23# to be adequate for qualitative de
scriptions of the collective dynamical behavior of biologic
networks.

The ‘‘local field’’ hi(t) at thei th neuron at timet is given
by

hi~ t !5(
j 51

N

@$Ji j Sj~ t !2wSj~ t !%

1l$Ki j Sj~ t2t!2wSj~ t2t!%#, ~1!

wherew is the relative strength of inhibition,l is the relative
strength of the delayed signal, andt is the time delay asso
ciated with the delayed signal. The four terms from left
Eq. ~1! represent, respectively, fast global excitation, fa
global inhibition, slow global excitation, and slow global in
hibition. These four ingredients are believed@24# to be es-
sential for a realistic modeling of neural oscillations in t
hippocampus. The ‘‘time’’t is discrete, with each unit~re-
ferred to as one ‘‘pass’’! corresponding to the updating ofN
neurons. The neurons are updated one at a time in arandom
sequence, according to the ruleSi(t11)51 if hi(t)>0 and
Si(t11)50 if hi(t),0.

A fixed number ~q! of random low-activity patterns
~memories! $j i

m%,i 51,2, . . . ,N; m51,2, . . . ,q, are stored
in the synaptic matricesJi j andKi j in the following way:
8-2
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STOCHASTIC NEURAL NETWORK MODEL FOR . . . PHYSICAL REVIEW E 66, 051908 ~2002!
Ji j 51 if (
m51

q

j i
mj j

m.0,

50 otherwise, ~2!

and

Ki j 51 if (
m51

q

j i
m11j j

m.0,

50 otherwise, ~3!

with j i
q115j i

1 , and Jii 5Kii 50. To simulate low average
activity of the network in the absence of any external stim
lus, the net activity of each memory,( i 51

N j i
m , is set at a

value n!N. The n ‘‘active’’ neurons in each memory ar
chosen randomly. The ‘‘fast’’ synaptic connectionsJi j act to
stabilize the system in one of the memory states, while
‘‘slow’’ connections Ki j tend to induce transitions from
memory state to the next one in the sequence after;t
passes. The global inhibition represented by thew terms pre-
vents simultaneous activation of more than one memor
With appropriate choice of the values of the parameters~spe-
cifically, for l.1 andw,1), the network exhibits a low-
activity limit cycle in which all theq memories are visited
sequentially@20#.

The simulations carried out in this study are for the f
lowing parameter values:N5200, q520, n510, w50.6,
l52, t52 passes. Proper functioning of the network in t
absence of any external input~the resting state! is verified by
starting the network in the memory statej i

1 at timet50, and
then monitoring the time evolution of the overlaps,mm(t)
5( i 51

N j i
mSi(t), m51,2, . . . ,q, of the network with the

memory states. The network evolution is found to follow
limit cycle in which it traverses sequentially the 20 memor
in about 60 passes. The resulting low-amplitude, noisy os
lations of the net activity,Sup(t)5( i 51

N Si(t), are shown in
Fig. 1~a!.

B. Spontaneous population bursting

To simulate the excess excitability of brain slices bath
in a high-potassium medium that induces spontaneous b
ing, the network is ‘‘chemically kindled’’@20# through a
Hebbian learning mechanism defined in the following w
If, over n1 consecutive passes,Si51 andSj51 more often
thann2 times, then the fast synaptic strengthJi j between the
two neurons is permanently set to 1. In our simulation,n1
510 andn256. The networks are chemically kindled b
switching on the Hebbian learning for 50 initial passes un
reduced inhibition (w is reduced from 0.6 to 0.24 during th
period!. The Hebbian learning process generates many
excitatory synaptic connections, leading to increased con
tivity between different memories. This, in turn, leads to t
formation of a new high-activity~epileptic! attractor of the
dynamics corresponding to excess correlated firing of
neurons. Different networks~i.e., networks with different re-
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alizations of the random memories$j i
m%) exhibit varying de-

grees of kindling due to differences in the initial connectiv
pattern.

For random sequential updating of the neurons,
kindled network makes occasional, short-lived, spontane
transitions to the high-activity attractor@20#. This is similar
to the spontaneous population bursting observed in the br
slice experiment. These bursts of high correlated activity
pear as ‘‘spikes’’ in the net activity of the network. The IB
are measured using the threshold crossing method@12#. Like
a low-pass filter in experiments, the net activity,Sup(t), is
first smoothened toSsm(t)51/tsm( t85t2tsm11

t Sup(t8), with

tsm540 passes. WheneverSsm(t) crosses an appropriatel
chosen upper threshold in the positive direction, a burs
recorded at the corresponding timet. Before the occurrence
of the next burst,Ssm(t) must decrease below a lower thres
old corresponding to the low-activity state of the network.
avoid rare occurrences of persistent high activity,refractori-
nessis introduced in the network in the following manner.
Ssm(t) remains higher than the upper threshold value c
tinuously for 20 passes, the neuron configurations~the cur-
rent one as well as the previous ones accounting for
delayed signal! are reset to one of the low-activity memor
patterns chosen randomly.

The net activity of a kindled network with refractorines
is shown in Fig. 1~b!, and the smoothened net activity
plotted in Fig. 1~c!. Positive crossings denoted by da
circles correspond to the occurrence of bursts a
T1 ,T2 , . . . , are theIBIs. Individual IBIs are integers mea
sured in units of passes.

We have studied 10 networks with different realizations
the random memories. A detailed analysis was carried ou

FIG. 1. ~a! Network dynamics before kindling, showing nois
low-amplitude oscillations of the net activitySup around an average
value nearn510; ~b! dynamics of the kindled network, showin
spontaneous bursting at irregular time intervals;~c! smoothened
network activity with IBIs (T1 ,T2 etc.! computed from positive
threshold crossings denoted by dark circles. These results were
tained using random sequential updating.
8-3
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B. BISWAL AND C. DASGUPTA PHYSICAL REVIEW E66, 051908 ~2002!
six of these networks. Each network shows a wide distri
tion of IBIs and the value of the average IBI varies subst
tially from one network to another, reflecting different d
grees of kindling. Similar sample-to-sample variations ha
been found@25# in hippocampal slices very similar to thos
used in the experiment of Ref.@9#. The variability of IBIs
shown in the raw-data plots in Ref.@25# is qualitatively simi-
lar to that found in our simulations.

C. Stochasticity of the bursting dynamics

The irregular bursting shown in Fig. 1~b! is found only for
random sequential updating~RSU!, i.e., when the neuron
are updated one at a time in a random sequence. Opera
ally, one of theN neurons is selected randomly for updatin
its local field is calculated, and its state variableSi is set to 0
or 1 depending on the sign of the local field. This proces
repeatedN times to complete one pass. To ascertain the
ture of the dynamics, we also checked the time evolution
the network without the randomness in the updating sche
and the refractoriness. In these simulations, refractorin
was implemented by always resetting the network to a fi
memory and the network was updated following two diffe
ent deterministic schemes:fixed sequential updating~FSU!
andparallel updating~PU!.

In the FSU, a specific sequence for updating theN neu-
rons is chosen randomly, and then the neurons arealways
updated in that sequence. For most choices of the up
sequence, the network remains confined to the low-acti
attractor andSup exhibits perfectly periodic, low-amplitude
oscillations. This is shown in Fig. 2~b!. However, for certain
‘‘special’’ choices of the update sequence, the network

FIG. 2. ~a! Network dynamics under random sequential upd
ing, showing excursions to the high-activity attractor at irregu
time intervals, and noisy low-amplitude oscillations of the net
tivity Sup(t) between these excursions;~b! fixed sequence updatin
~switched on att51000) that traps the network in the low-activit
attractor, leading to low-amplitude periodic behavior ofSup(t); ~c!
fixed sequence updating~switched on att51000) that produces
periodic transitions to the high-activity attractor.
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found to make periodic transitions to the high-activity attra
tor, as shown in Fig. 2~c!. In the PU scheme, all the neuron
are updated simultaneously. The dynamics under PU is qu
tatively similar to the behavior found for FSU. Depending
the network state at the time of switching on the PU, t
network either remains confined to the low-activity attrac
or makes periodic transitions to the high-activity attrac
with somewhat higher degree of correlated activity than t
found for FSU. These observations establish that the un
lying stochasticity in the updating scheme is an essen
requirement for the network to exhibit spontaneous burst
similar to that observed in brain slices~large variability in
the IBIs!.

Among the three different updating procedures discus
above, the RSU scheme also appears to be most ‘‘physi
for describing the behavior of brain slices. A realistic d
scription of the dynamics of a network of biological neuro
may be obtained@26# in terms of coupled differential equa
tions that govern the time evolution of membrane potent
and ionic currents. In this description, a neuron fires~i.e.,
generates an action potential! if its net membrane potentia
exceeds a threshold. Once a neuron fires, it cannot fire a
unless a short refractory period has elapsed. In the discr
time dynamics of our simple model, the unit of time~one
pass! approximately corresponds to this refractory peri
@23#: each neuron can, on an average, fire once during
period. However, if no external ‘‘clocklike’’ mechanism i
present, then there is no reason to expect that the memb
potentials of different neurons in a network would reach
threshold value at exactly the same time. Since externa
puts that may synchronize or order in time the firing of
the neurons are not expected to be present in such ‘‘in vitro’’
brain slices, the asynchronous dynamics of the RSU sch
should be appropriate for describing such systems.
therefore, used the RSU scheme in all our simulations.
results described above suggest that the time series of
obtained from these simulations are stochastic.

We have carried out several tests to check whether or
the IBI time series are truly stochastic. We looked for cor
lations in the IBI time series by calculating the autocorre
tion function

C~n!5
1

m2n (
i 51

m2n

~Ti2T̄!~Ti 1n2T̄!/s2, ~4!

where m is the total number of IBIs in the dataset,T̄
51/m( i 51

m Ti is the average IBI, ands251/m( i 51
m (Ti

2T̄)2. As shown in Fig. 3, the IBIs are completely uncorr
lated in time in all the networks. A similar absence of corr
lation has been found in the experiment of Ref.@25# on hip-
pocampal slices.

The probability distribution of the IBIs follows a Poisso
form, P(Tn)}exp(2aTn), in all the networks. Sample result
for network 1 are presented in Fig. 4, in which both t
simulation data and the fit to a Poisson form are shown. T
smoothening procedure we have used for low-pass filte
of the data does not allow the occurrence of IBIs sma
than about 2tsm580 passes. For this reason, the Poisson

-
r
-
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STOCHASTIC NEURAL NETWORK MODEL FOR . . . PHYSICAL REVIEW E 66, 051908 ~2002!
tribution is cut off near the origin. The value of the parame
a shows large sample-to-sample variation in the range
tween 831024 and 331023. The form of the distribution of
the IBIs recorded in brain-slice experiments@9,17,25# has
not been reported in the literature. The data in the first ret
maps of the IBI time series shown in Refs.@17,18# indicate a
distribution that exhibits a sharp maximum close to the l
end and decreases slowly to zero at the high end. Thi
similar to a Poisson distribution truncated at the low end

Our results suggest that the transition of the network fr
the low-activity state to the high-activity one is a stochas
process that has a small probabilityp512exp(2a) of oc-
curring at each step. For this value ofp, the probability of
having two successive transitions separated by a time in
val of Tn units would be proportional to (12p)Tn

FIG. 3. Autocorrelation functionC(n) of the IBIs from six net-
works.

FIG. 4. Probability distribution of IBIs from network simulatio
~circles! and Poisson simulation~triangles! in the absence of contro
in network 1. The dashed line is the best fit to an exponen
~Poisson! form.
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5exp(2aTn), which would match the Poisson distribution o
the IBIs found in our simulations. To check this, we ha
carried out Monte Carlo simulations of a Poisson proc
with probability p of occurrence at each time step. In th
simulation, a random numberr distributed uniformly be-
tween 0 and 1 is generated at each time step, and the o
rence of a ‘‘burst’’ is recorded ifr<p. Sincer is distributed
uniformly between 0 and 1, the probability ofr being less
than or equal top is p itself. So, this Monte Carlo procedur
ensures that the bursts occur with probabilityp. Once a burst
occurs, the next one cannot occur during the next 2tsm time
steps. We use this procedure to generate the same numb
‘‘IBIs’’ as in the original time series and compute their di
tribution function. As shown in Fig. 4, the distribution func
tions obtained from the network and Poisson simulations
essentially identical. Similar close agreements between
results of the network and Poisson simulations of the beh
ior under different control procedures~see Sec. III F for de-
tails! provide strong support to the conclusion that the I
time series obtained in our simulations are stochastic in
ture.

A defining feature of deterministic chaos is extremely se
sitive dependence on initial conditions, manifested in an
ponential divergence of trajectories starting from nea
points. We have carried out a simple calculation to look
this behavior in our IBI time series. This involves a calcu
tion of the quantity^ ln@d(k)#& where d(k)5uTi 1k2Tj 1ku,
and the averagê•••& is over pairsi and j with d(0)5uTi
2Tj u,n, n being a small number. A similar calculation fo
the chaotic logistic map shows an exponential growth
^d(k)& with increasingk, and a crude estimate of the value
the Lyapunov exponent can be obtained by fitting the dep
dence of^ ln@d(k)#& on k to a straight line. For our IBI time
series, on the other hand, we find that^ ln@d(k)#& is indepen-
dentof bothk andn, indicating that the IBIs are independe
random variables. Similar results are obtained for a tw
dimensional delay embedding,

d~0!5uTi2Tj u1uTi 112Tj 11u,n,
~5!

d~k!5uTi 1k2Tj 1ku1uTi 1k112Tj 1k11u.

Here, we find that̂ ln@d(k)#& is independent ofn, and inde-
pendent ofk for all k.1. These observations confirm th
stochastic nature of theTi time series and indicate that th
use of more sophisticated methods to calculate Lyapu
exponents from our time-series data would not be mean
ful. Further evidence for the stochastic nature of the IBI tim
series is obtained from the surrogate analysis describe
Sec. IV.

The behavior ofd(k) found for our IBI time series is
similar to the observation in Ref.@17# that a small cluster of
points in the first return map of the experimentally obtain
IBI time series expands rapidly and covers nearly the wh
allowed region within two iterations. Due to this rapid e
pansion, conventional methods of estimating the value of
largest Lyapunov exponent from time-series data could
be used to analyze the experimental data. Instead, a
technique called ‘‘expansion rate analysis’’@17# was used.
l
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B. BISWAL AND C. DASGUPTA PHYSICAL REVIEW E66, 051908 ~2002!
This analysis did not provide any evidence of determinism
data. This feature of the experimentally obtained IBI tim
series is clearly in agreement with our simulation results

III. SIMULATIONS OF CONTROL METHODS

As discussed in the preceding section, the IBI time se
obtained from simulations of the stochastic neural netw
exhibit general characteristics that are quite similar to th
of the IBI time series obtained in brain-slice experime
@9,25#. It is, therefore, interesting to enquire whether some
the control results reported in Ref.@9# can also be reproduce
in simulations of the network model. We have carried o
extensive simulations of the behavior of six networks un
the application of various control methods. The results
these simulations are described in this section.

A. Apparent unstable periodic orbits

Following the analysis of IBIs from spontaneously bur
ing brain slices@9#, we searched for UPO-like trajectories
first return maps of IBIs from six different networks. UPO
of period one appear as UFPs in the first return map defi
as a plot ofTn vs Tn21. Unlike typical return maps from
deterministic chaotic dynamics, the points in the return m
constructed from our IBI time series fill up the entire spa
reflecting the underlying stochastic dynamics of the netwo
The Poisson distribution of the IBIs leads to a clustering
points near the origin and the axes. A return map constru
from a 1320-IBI time series collected over 53105 passes for
network 1 is shown in Fig. 5. The lack of any geometric
structure in the return maps of our IBI time series is simi
to the behavior found in brain-slice experiments@9,17,18#.

Although the return maps do not have the structure
pected for deterministic dynamics, we found many UPO-l
trajectories which have multiple occurrences and satisfy
the criteria adopted by Schiffet al. @9#. Many such purely

FIG. 5. Recurrent UPO-like trajectories in network 1 chosen
control. Three sequences starting at different times~denoted by 1)
are shown along with the calculated stable and unstable manif
denoted by arrows.
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accidental occurrences of UPO-like trajectories were fou
in all the six networks studied. The apparent UPOs are id
tified from trajectories in the return map that first approac
point on the identity line (Tn5Tn21) along a line~stable
manifold! and then diverge away along a different line~un-
stable manifold!. Specifically, we searched for trajectorie
that satisfy the following criteria. If the sequence of points
marked as 1,2,3. . . , then we have the following.

~1! The point 1 is away from the identity line, and th
point 2 lies close to the identity line.

~2! At least two subsequent points diverge away fro
point 2 along a straight line with a negative slope with ma
nitude greater than unity. The intersection of this line w
the identity line is taken to be the location of the UFP.

~3! The points on the unstable manifold alternate on
two sides of the identity line~flip-saddle criterion!.

~4! At least two such sequences of points, starting at d
ferent times, exhibit similar trajectories near the same U
~recurrence criterion!.

~5! The best-fit straight lines to the first points of all the
recurrent sequences intersect the identity line near the U
This line, whose slope is usually close to zero~the magnitude
of the slope must be less than unity!, defines the stable mani
fold.

With short sequences~3–5 points!, it is not possible to
check with certainty that the sequence of points defining
unstable manifold diverge exponentially away from the UF
This condition is approximately satisfied by most of the s
quences obtained with the criteria listed above. The ma
folds are determined through least-square fits to the co
sponding points in all the recurrent sequences. If the sta
manifold does not pass through the UFP, a straight line p
allel to this line and passing through the UFP is taken as
stable manifold. An example of recurrent UPO-like trajec
ries found in network 1 is shown in Fig. 5 along with th
computed stable and unstable manifolds. Another exam
from the same network may be found in Ref.@21#.

After the determination of the UFPs and the correspo
ing stable and unstable manifolds, simulations of vario
control methods~chaos control, periodic pacing, deman
pacing and anticontrol! around one selected UFP for each
the six networks were carried out. The chosen UFPs and
slopes of the manifolds used for these control applicati
are summarized in Table I. These control methods invo
the generation of bursts at appropriately chosen times by
application of an external stimulation. An external stimu
tion was modeled in our simulations by a reduction of t
inhibition strengthw from 0.6 to 0.24 for five passes.

For each of the control methods, we carried out simu
tions in which 5000 bursts are generated. A statistical su
mary of the results of these control simulations is provided
Table II. This table gives the values of the average IBIT̄, the
standard deviations of the IBIs, and the percentage of IBI
above (Tn.T* 1tsm), below (Tn,T* 2tsm), and near
(T* 2tsm<Tn<T* 1tsm) the selected UFPT* . The percent-
age ~sgs! of IBIs generated by applications of the contr
stimulation is also listed for each of the control methods.

r

ds
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B. Chaos control

The applied chaos-control method@9,12# is a variant of
the original technique proposed by Ott, Grebogi, and Yo
@10#. In this method, also referred to as the proportional p
turbative feedback~PPF! method @27#, artificial bursts are
produced through timely stimulations that attempt to pla
the state point on the stable manifold of the UPO selected

TABLE I. The UFP (T* ), the slope of the stable manifold (ms),
and the slope of the unstable manifold (mus) chosen for control in
six networks. The percentages of IBIs above, below, and near
stable manifold~SM! during chaos control are given in columns
5, and 6, respectively.

No. T* ms mus Above Below 6tsm

SM SM of SM

1 345 20.041 21.0623 0.1 55.0 44.9
2 1121 20.127 21.18 1.6 55.8 42.6
3 823 0.097 21.54 0.6 56.6 42.8
4 447 0.342 21.43 7.0 30.2 62.8
5 1099 20.257 21.468 2.1 71.1 26.8
6 937 20.476 21.683 0.0 65.5 34.5
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control. Whenever a burst occurs, the current IBITn is com-
puted and the time at which the next burst should occu
order to place the state point on the stable manifold in
return map is calculated from the equation of the sta
manifold. This time istn111ms(Tn2T* )1T* , wheretn11

is the time of occurrence of the last burst (Tn5tn112tn) and
ms is the slope of the stable manifold. An external stimulus
applied at this time if no natural burst occurs before its a
plication. If a natural burst occurs prior to the application
the stimulus, then the time of application of the stimulus
recalculated using the value of the new IBI. In Fig. 6, tw
sequences of IBIs with such control from networks 1 and
are plotted. The control clearly increases the number of I
with values close toT* . These control results are qualita
tively similar to those reported by Schiffet al. for brain
slices.

However, a close inspection of the control results sho
that the control mechanism ‘‘works’’ mostly by preventin
the occurrence of natural IBIs above the stable manifold. T
external stimulus that attempts to place the state point on
stable manifold almost always produces a burst. This ma
the occurrence of bursts withTn11.ms(Tn2T* )1T* ex-
tremely rare. The occurrence of spontaneous IBIs below

he
00
, 7,
column
TABLE II. Comparison of IBI statistics from six networks during no control~NC!, chaos control~CC!,

periodic pacing~PP!, and demand pacing~DP!. The average IBIT̄, the number of passes to generate 50
IBIs, and the standard deviations of the IBIs are given in columns 3, 4, and 5, respectively. Columns 6
and 8 list the percentage of IBIs generated above, below, and near the UFP, respectively. The last
~sgs! lists the percentage of IBIs generated by external stimuli.

No. Type Duration T̄ s Above Below Around sgs

3105 T* T* T*

1 NC 18.442 369 297 34.3 53.8 11.9
CC 12.575 251 100 0.1 54.4 45.5 38.5
PP 10.915 218 102 2.3 71.0 26.7 47.7
DP 12.322 246 99 0.1 56.1 43.8 37.4

2 NC 66.027 1320 1236 42.3 54.8 2.9
CC 41.304 826 492 19.9 55.2 24.9 39.0
PP 32.075 641 397 1.7 74.5 23.8 32.7
DP 40.482 810 469 1.6 55.3 43.1 40.1

3 NC 44.16 883 816 38.2 57.2 4.6
CC 27.561 551 290 0.6 73.1 26.3 40.0
PP 23.071 461 272 1.1 76.7 22.2 45.4
DP 27.964 559 283 0.5 59.6 39.9 36.7

4 NC 48.938 979 930 62.3 32.1 5.6
CC 21.977 440 392 12.4 48.6 39.0 57.0
PP 17.876 358 186 7.3 48.9 43.8 50.1
DP 22.326 447 397 7.2 31.5 61.3 55.4

5 NC 47.191 944 898 28.9 68.3 2.8
CC 35.945 719 468 19.4 71.0 9.6 24.6
PP 27.853 558 376 2.5 83.6 13.9 39.7
DP 34.966 699 442 2.8 67.7 29.4 26.9

6 NC 49.383 988 953 36.4 60.2 3.4
CC 33.041 661 369 23.2 68.1 8.7 32.8
PP 25.477 510 303 0.4 78.5 21.1 49.2
DP 31.113 622 314 0.0 60.0 40.0 38.1
8-7
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FIG. 6. Comparison of control methods. Re
sults of chaos control~CC!, periodic pacing~PP!,
demand pacing~DP!, and anticontrol~AC! runs
that produce 300 IBIs each in~a! network 1 and
~b! network 4 are shown. No control is applie
during the intermediate periods of 150 IBIs. IBI
generated by the external stimuli are denoted b
different symbol~stars! to distinguish them from
the spontaneous IBIs.
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stable manifold are not significantly affected by the appli
tion of the control. Consequently, the control procedu
works better~i.e., the fraction of IBIs nearT* increases! if
T* is small and the slope of the stable manifold is close
zero. This is illustrated in Fig. 6 where the ‘‘quality’’ o
control in network 4, for which bothT* and ms are larger
than those for network 1~see Table I!, is clearly found to be
worse than that in network 1: the fraction of IBIs nearT* is
smaller, and the fraction of IBIs greater thanT* is higher in
network 4~see Table II for the values of these fractions!. The
results of control are also better if the average IBI in t
undisturbed network is large: this decreases the numbe
spontaneous IBIs lying below the stable manifold. All the
characteristics of the control results may be found in
statistical summary given in Table II. These results are qu
tatively similar to those reported in Ref.@12# for a stochastic
single-neuron model.

In a truly deterministic chaotic system, intermittent app
cations of the external stimulus should lead to effective c
trol. Once the state point is correctly placed close to
stable manifold by an external stimulus, a few subsequ
points should continue to remain near the stable mani
without any external intervention. The trajectory would th
deviate away, needing external intervention after some t
to put the state point back in the vicinity of the stable ma
fold. In our simulations, intermittent applications of the co
trol stimulus did not produce effective control. This is co
sistent with the purely stochastic nature of the burst
dynamics of our model. Intermittent control applicatio
were also unsuccessful in the brain-slice experiment@9#, al-
though this may also be attributed to inaccuracies in the
termination of the slope of the stable manifold from noi
~and possibly nonstationary! physiological data.

If the state point remains close to the stable manifold a
approaches the UFP for some time after it has been pla
there by a control stimulus~as it should in a system exhibit
ing deterministic chaos!, then a majority of the IBIs found
near the fixed point in the presence of control should oc
naturally rather than through applications of the exter
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stimulus. In our simulations where the underlying dynam
is stochastic, almost all the IBIs clustering around the fix
point value and giving the impression of successful con
are generated by the control stimulus. This can be see
Fig. 6 where the stimulus-generated IBIs and the natur
occurring ones are plotted with different symbols. As emp
sized in Ref.@28#, such an analysis is absolutely necess
for an unambiguous interpretation of the apparent succes
chaos control found in the brain-slice experiment. Since
chaos control procedure attempts to put the system poin
the stable manifold, a relevant quantity to consider is
fraction of IBIs found within6tsm of the stable manifold
during the application of chaos control. Values of this qua
tity for the six networks are given in Table I. These valu
are close to~slightly higher than! the fractions of stimulus-
generated IBIs given in Table II. This confirms that nearly
points found near the stable manifold during chaos con
are generated by the control stimulus.

As indicated in Table I, a small fraction of IBIs are foun
to lie above the stable manifold even when the control is
This is due to rare failures of the external stimulus to gen
ate a burst. Increasing the strength of the stimulus~i.e., in-
creasing the amount by whichw is decreased during the ap
plication of the stimulus! improves the quality of control by
decreasing the number of IBIs lying above the stable ma
fold. This is analogous to the improvement in control fou
in the brain-slice experiment when two pulses instead of
were used to generate a burst at the appropriate time.

Slutzky et al. @18# have recently reported the results
applications of chaos control methods to spontaneou
bursting hippocampal slices similar to those studied in R
@9#. One of the control methods used by them is similar
ours, with the difference that in their experiment, the cont
stimulus to generate a burst was applied only when the
tance of the state point from the selected UFP exceede
suitably chosen ‘‘control radius’’Rc . Large values ofRc
correspond to intermittent applications of the control stim
lus, and this method reduces to the one used by us in
limit of very small values ofRc . Slutzky et al. studied the
8-8
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STOCHASTIC NEURAL NETWORK MODEL FOR . . . PHYSICAL REVIEW E 66, 051908 ~2002!
effects of changing the value ofRc on the efficacy of control.
They also kept track of the fraction of bursts generated
the control stimulus. They found that the quality of contr
measured by the variance of the IBIs generated during c
trol, increases asRc is decreased. However, decreasingRc

also increased the fraction of stimulus-generated IBIs, in
cating that the improvement of control was mostly due to
generation of many IBIs nearT* by the external stimulus
This is similar to the results of our simulations. The values
T* and ms for the UPOs selected for control were not r
ported in Ref.@18#. It appears from the plots shown in th
paper that good control was achieved only whenT* is close
to the lower limit of the IBI distribution and the value ofumsu
is close to zero. As mentioned above, a very similar beha
was observed in our simulations of PPF control. Slutz
et al. have also reported the results of applications of
adaptive tracking method@29# that continuously refines th
estimates ofT* andms during the application of control, an
a new protocol called ‘‘state point forcing’’ that helps in d
termining the validity of fixed point estimates. Simulatio
of these methods for our network model are planned for
near future.

C. Periodic pacing

In periodic pacing, the network is stimulated at fixed i
tervals equal toT* irrespective of the occurrence of natur
spikes. As a result, many artificial bursts at intervals equa
T* are generated, and naturally occurring bursts correspo
ing to IBIs larger thanT* are eliminated. Periodic pacin
also produces many new IBIs smaller thanT* —these are
due to spontaneous bursts occurring between two succe
applications of the control stimulus.

Two sequences of IBIs with periodic pacing from ne
works 1 and 4 are plotted In Fig. 6. From the density
points nearT* , it is evident that in network 1 periodic pac
ing is less effective than chaos control in increasing the
riodicity of the bursts. The reverse is true in network 4. T
quantitative differences between the results obtained for
two networks may be found in Table II. These differences
mainly due to differences in the slopes of the stable ma
folds. As discussed in the preceding section, chaos con
works well in network 1 because bothT* and umsu are rela-
tively small. Sinceumsu is close to zero in this case, trying t
place the state point on the stable manifold during ch
control is basically the same as periodic pacing, except
the external stimulation is not applied if a spontaneous b
occurs before its application. This eliminates the large nu
ber of small IBIs found in periodic pacing. In network
chaos control produces a large number of IBIs near the st
manifold, but only a small fraction of them lie nearT* be-
causeumsu is relatively large. So, if the fraction of IBIs nea
T* is taken to be the measure of the effectiveness of
control procedure, then periodic pacing works better th
chaos control in this network.

It is clear from Fig. 6 that a large fraction of the IBI
found nearT* during periodic pacing are generated by t
external stimulus. In contrast to the behavior during ch
control, a large number of IBIs lower thanT* are also gen-
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erated by the external stimulus. This is due to spontane
bursts between two successive applications of the stimulu
small number of IBIs with values larger thanT* are also
found. As noted above, these are due to occasional failure
the stimulus in producing the required burst.

These features are similar to the results of the brain-s
experiment@9#. However, some of the successful period
pacing results in the brain-slice experiment, where the nu
ber of IBIs belowT* are also apparently reduced, cannot
reproduced in our network simulation. Periodic pacing in t
networks always increases the number of IBIs belowT* ~see
Table II!. In fact, the amount of time required to generate
fixed number of IBIsdecreases~the value of the average IB
becomes smaller! whenever any form of control is applied t
our networks. Applications of the external stimulus to gen
ate bursts at appropriate times during control increases
number of bursts, but the naturally occurring bursts in o
stochastic model are not affected by the control. As a res
the total number of bursts in a fixed period always increa
during control. This is clear from the data shown in Table
A convincing demonstration that the average IBI can bein-
creasedby the application of one of these control methods
brain-slice experiments would provide strong support to
claim @9,16# of deterministic behavior in such systems.

D. Demand pacing

In demand pacing, the network is prevented from prod
ing any IBI higher than the UFP by timely applications of th
external stimulus. Given the occurrence of a burst at timetn ,
the external stimulus is applied at timetn1T* if no sponta-
neous burst occurs before its application. This procedur
essentially the same as the PPF chaos-control method
scribed above if the slope of the stable manifold is close
zero. This similarity between PPF control and demand p
ing has been noted in a recent experimental study@18#. For
stable manifolds of larger slope, however, demand pacin
more effective than chaos control in increasing the period
ity of the bursts. Demand pacing always works better th
periodic pacing by eliminating some of the short IBIs gen
ated in periodic pacing through the occurrence of sponta
ous bursts between two successive applications of the e
nal stimulus. In all the networks, the number of IBIs near t
fixed point in demand pacing is close to the sum of t
number of stimulus-generated bursts and the number
spontaneous bursts expected near the fixed point in the
disturbed network during the period of application of contr

The results of applications of demand pacing to netwo
1 and 4 are plotted in Fig. 6. The characteristics of dem
pacing mentioned above are evident from this figure, a
also from the quantitative results shown in Table II. The
results are consistent with the underlying stochastic dyn
ics of the networks. Specifically, the increased effectiven
of demand pacing over chaos control whenumsu is large is
expected only if the dynamics is stochastic. In truly chao
dynamics, a chaos-control mechanism that makes use o
saddle structure near a candidate UPOs is expected t
qualitatively different from, and more effective than dema
pacing which amounts to just cutting off the IBIs above t
8-9
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B. BISWAL AND C. DASGUPTA PHYSICAL REVIEW E66, 051908 ~2002!
UFP. Therefore, if the bursting in brain slices were tru
deterministic, then, irrespective of the slope of the sta
manifold, chaos control should always be more effect
than demand pacing in increasing the periodicity of
bursts. An experiment in which the effectivenesses of th
two methods are compared would be very helpful in und
standing the nature of the underlying dynamics and in es
lishing unambiguously the occurrence of chaos.

E. Anticontrol

Anticontrol methods@30–33# use the underlying deter
ministic dynamics to increase or preserve its complex
Schiff et al. @9# tried to achieve this by applying PPF-typ
control for an appropriately chosen anticontrol line~‘‘repel-
lor’’ line ! that passes through the selected UFP. They m
the ad hocchoice of the repellor line to be the mirror imag
of the unstable manifold about the identity line. It w
claimed that this choice effectively diverted the state po
away from the UFP and increased the variability of IBIs.
the brain-slice experiment, anticontrol applications had li
ited success: only a small fraction of the attempts appea
to be effective in increasing the variability of the IBIs. Qua
tatively similar results were obtained by Christini and C
lins @12# in their simulations of a stochastic single-neur
model.

A proper assessment of the success of anticontrol requ
a quantitative measure of its effectiveness in increasing
variability of the IBIs. No such measure was defined in Re
@9# and @12#. We have defined two dimensionless quantit
that may be used for this purpose. The first one is the r
(r 1) of the standard deviations of the IBIs recorded during
anticontrol run and during a run of the same duration with
any control. Values ofr 1 greater than unity would indicat
success of anticontrol. A second quantity we have conside
is the ratio (r 2) of the standard deviation and the mean of t
IBIs recorded during anticontrol. This quantity measures
scaled variability of the IBI distribution. Values ofr 2 ob-
tained from simulations of our networks in the absence
any control lie between 0.8 and 0.95, the smaller values
ing obtained in networks with relatively small values of t
mean IBI ~see Table II!. Deviations of these values from
unity, the value expected for a Poisson distribution, are
to the small-T cutoff in the IBI distribution. Substantially
higher values ofr 2 during the application of anticontro
would indicate its success.

Repellor lines obtained from the prescription of Sch
et al. @9# have negative slopes with magnitude smaller th
unity. As a result, the control stimulus attempts to genera
large IBI after the occurrence of a small one, and vice ve
Also, stimulus-generated IBIs cannot exceed the value gi
by the point at which the repellor line intersects they axis.
As noted above, this prescription for selecting the slope
the repellor line does not have any clear justification. A d
ferent choice was made by Christini and Collins@12# who
took the repellor line to be the mirror image of the unsta
manifold about a line passing through the UFP and perp
dicular to thex axis. Since the slope of the unstable manifo
is always negative with magnitude larger than unity, t
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slope of such a repellor line is always positive and larg
than unity. Such lines impose no upper bound on stimul
generated IBIs. A small IBI leads to a subsequent small
induced by the control stimulus, and a large IBI leads to
large one unless a natural burst occurs prior to the appl
tion of the control stimulus.

In the absence of any clear-cut prescription for choos
the slopes of the repellor line, we have systematically stu
ied the effectiveness of anticontrol for many different valu
of s. We found that if the number of IBIs recorded during a
application of anticontrol is sufficiently large (.103) to give
reliable statistics, then the standard deviation of the IBIs d
ing anticontrol is smaller than that for the undisturbed n
work (r 1,1) for all choices ofs. The reason for this behav
ior is the same as that mentioned above for the result tha
average IBI obtained from our simulations in the presence
any form of control is smaller than that for the undisturb
network. In our stochastic networks, applications of the c
trol stimulus generate additional bursts, but cannot prev
the occurrence of spontaneous bursts. Therefore, the num
of relatively small IBIs can be increased, but the upper lim
of the IBI-distribution cannot be extended beyond the va
found in the same network without any control. However,
simulations of anticontrol over relatively small periods du
ing which only a few hundred bursts are generated, ‘‘s
cessful’’ anticontrol (r 1.1) was observed in a few runs wit
large, negative values ofs. This is purely due to statistica
fluctuations: values ofr 1 smaller than unity were obtaine
when the simulations were continued for longer perio
Similar to the experimental results, anticontrol failed in mo
cases even during these small-duration runs. Application
anticontrol in brain slices for longer durations would be us
ful to determine whether the reported successes of antic
trol were due to the deterministic nature of the dynamics
due to inadequate statistics.

While this anticontrol method cannot increase the st
dard deviation of the IBIs in our stochastic networks, it c
increase the relative variabilityr 2 of the IBI distribution for
appropriate choices of the slopes of the repellor line. We
found that values ofs close to unity are most effective in
producing large values ofr 2. Repellor lines withs slightly
above unity do not impose any upper or lower bound on
stimulus-generated IBIs, and are definitely off the manifol
Anticontrol with such values ofs produces many additiona
artificial IBIs of small magnitude. This decreases both t
mean value and the standard deviation of the IBIs. T
former is decreased more in comparison with the latter,
that the value ofr 2 is increased. Our simulations withs close
to unity yield values ofr 2 in the range 1.2–1.6. The resul
of two such applications of anticontrol over relatively sm
durations are shown in Fig. 6. These plots are visibly sim
to those shown in Ref.@12#. We have also found that increas
ing the strength of the control stimulus increases the eff
tiveness of anticontrol, essentially by ensuring that the stim
lus produces the desired burst. This is similar to the res
reported in Ref.@9# for ‘‘double-pulse’’ control methods.

F. Poisson simulations

We have carried out Poisson simulations of all the con
procedures described above. As mentioned in Sec. II C, th
8-10
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STOCHASTIC NEURAL NETWORK MODEL FOR . . . PHYSICAL REVIEW E 66, 051908 ~2002!
simulations are based on the assumption that the transitio
the network to the high-activity state~i.e. the occurrence of a
burst! is a stochastic process that has a probabilityp of oc-
curring at each time step. The values ofp for the six net-
works studied were computed from the results of netw
simulations. The additional ingredient required for simul
ing control methods is the process of generating bursts
applying an external stimulus. This was modeled by anot
independent stochastic process that has a high probabilitp8
of occurrence at the time of application of the external stim
lus. Values ofp8(0.9<p8<1.0) were obtained from networ
simulations where we kept track of the fraction of appli
stimuli that produced bursts.

All the measurements made in the network simulatio
~the measured quantities are listed in Tables I and II! were
repeated in our Poisson simulations. A comparison of the
sets of results for each network showed good agreemen
all cases. Such comparisons for the probability distribut
of the IBIs during chaos control, periodic pacing and dema
pacing in network 1 are shown in Figs. 7, 8, and 9, resp
tively. These plots illustrate the close agreement between
results of network and Poisson simulations. Similar res
for network 6 may be found in Ref.@21#. These results con
firm the stochastic nature of the IBI time series generate
our network model.

FIG. 7. Probability distribution of IBIs from network simulatio
~dotted line! and Poisson simulation~dark triangle! during chaos
control in network 1.

FIG. 8. Probability distribution of IBIs from network simulatio
~dotted line! and Poisson simulation~dark triangle! during periodic
pacing in network 1.
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IV. STATISTICAL SIGNIFICANCE OF UPOS

As discussed in Secs. II and III, simulations of our s
chastic neural network model qualitatively reproduce all
features found in the brain-slice experiment of Ref.@9#. This
observation raises the following important question: do
results reported in Ref.@9# establish the occurrence of dete
ministic chaos in spontaneously bursting hippocampal slic
or alternatively, do these results reflect apparent determin
features that appear purely as a matter of chance in a
chastic time series. This issue was first raised by Chris
and Collins@12# who showed that simulations of a stochas
single-neuron model reproduce most of the results repo
in Ref. @9#.

More recently, a number of new methods have been p
posed for locating UPOs in experimental time-series d
and for assessing their statistical significance through su
gate analysis. Soet al. @14# have proposed a method bas
on adynamical transformationthat utilizes the local dynam
ics to enhance the probability measure about distinct UP
in state space. In subsequent work@15,16#, this method has
been applied to analyze IBI datasets obtained from the br
slice experiment. These studies claim to have found UPO
a statistically significant number of windowed datase
Similar results have been found in a recent study@17# of
hippocampal bursting under three different experimen
conditions. In an analysis using the same dynamical trans
mation, but a different criterion for assessing the statisti
significance of candidate UPOs, Van Quyenet al. @19# have
reported detection of statistically significant UPOs in hum
epileptic activity. Pierson and Moss@13# have proposed a
topological recurrencecriterion for locating UPOs in noisy
time-series data. Using this method in combination with s
rogate analysis, Pei and Moss@34# have detected statisticall
significant UPOs in the dynamics of the crayfish caudal p
toreceptor. Using the same method, de la Pridaet al. @35#
have found statistically significant UPOs in ISI data obtain
from immature hippocampal networks.

To test the reliability of these statistical methods, and
check whether or not simulations of our model can reprod
some of the results obtained from their applications to
perimental data, we have used these methods to analyz
stochastic IBI time series obtained from our network sim

FIG. 9. Probability distribution of IBIs from network simulatio
~dotted line! and Poisson simulation~dark triangle! during demand
pacing in network 1.
8-11
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B. BISWAL AND C. DASGUPTA PHYSICAL REVIEW E66, 051908 ~2002!
lations. The results of these studies are described in this
tion.

A. Method of So et al.

We first consider period-1 orbits that correspond to fix
points in the first return map. In the method of Soet al., such
fixed points are detected by performing the following d
namical transformation@14# on the IBI time series$Tn%:

T̂n5
Tn112sn~k!Tn

12sn~k!
, ~6!

where

sn~k!5
Tn122Tn11

Tn112Tn
1k~Tn112Tn!. ~7!

Under this transformation, most of the points in the line
region around a fixed pointT* are mapped to the vicinity o
T* . Therefore, a histogram of the probability distributio
r(T̂) of the transformed time series$T̂n% shows a sharp pea
at each fixed point. Spurious peaks, which depend stron
on the parameterk, are eliminated by averaging the distrib
tion over a large number of random values ofk obtained as
k5kR whereR is a random number distributed uniformly i
@-1,1#, and k is a parameter chosen to ensure that the
terms on the right-hand side of Eq.~7! have the same orde
of magnitude. The statistical significance of candidate UP
corresponding to peaks ofr(T̂) is assessed from a compar
son with the distribution obtained for a large number of ca
fully constructed, randomized versions~surrogates! of the
original dataset.

In the analysis@15,16# of the brain-slice data using thi
method, it was argued that in biological systems the par
eters governing the underlying dynamics are not stationar
time. This argument contradicts to some extent the interp
tation of the control results reported in Ref.@9#, where it was
claimed that candidate UPOs detected from a search duri
‘‘learning’’ period can be used to control the dynamics
subsequent time intervals of substantial duration. Never
less, assuming the system parameters to vary slowly in t
the IBI dataset obtained from the experiment was broken
into small overlapping@15# or nonoverlapping@16# windows
of size m, which is chosen to be small enough to mainta
stationarity and large enough to provide adequate statis
The transformation of Eq.~6! was then applied to the data i
each window to obtain the distributionr(T̂).

Using many realizations of Gaussian-scaled pha
shuffled surrogates@36# ~random shuffling that approxi
mately preserve the power spectrum! of the original data in
each window, the statistical probability that the observ
peaks in the transformedr(T̂) could be found in random
surrogates was estimated. For each realization of the su
gate data, the same procedure was applied to calculate
distributionrsur(T̂). Then, from this collection of$rsur(T̂)%,
the ensemble-averaged distributionr̄sur(T̂) was obtained.
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Fluctuations of the distribution for an individual realizatio
of the surrogates from the ensemble average were meas
by

w~ T̂!5rsur~ T̂!2 r̄sur~ T̂!. ~8!

For each surrogate, the maximum deviationW
5max@w(T̂)# was measured, and the fractionJ(W8) of sur-
rogates with maximum deviationW.W8 was found using a
large number of surrogates. Then, the statistical significa
of a candidate UPO atT̂* was estimated from the value o
J(W* ) whereW* 5r(T̂* )2 r̄sur(T̂* ). Specifically, the sta-
tistical confidence level for the detection of an UPO w
estimated to be@12J(W* )#3100%.

We have carried out the same analysis using window
datasets obtained from our network simulations. We sca
the IBI data to match the experimental data used in
analysis of Ref.@15#. In that work, 1834 ISIs collected ove
25 min were analyzed for the detection of UPOs. In netwo
1, the same number of IBIs are generated in 685 409 pas
We, therefore, scaled our time unit by setting one pass e
to 0.0022 s. In our analysis, we used 100 surrogates, t
k55.0, and averaged the distribution over 500 values of
random numberR. Representative results of this analysis a
shown in Fig. 10. We found that this method successfu
rejects the UPO-like trajectories found in the first retu
maps of the IBI time series obtained from our network sim
lationsonly if the dataset used in the analysis is sufficien
large (m>2048). Our results for a dataset withm54096,

FIG. 10. Statistical significance of UPOs~method of Soet al.,
see Sec. IV A! in windowed datasets. The plots show histograms

the probability distributionr(T̂) ~solid line! of the transformed se-
ries for the original dataset, and the average probability distribu

r̄(T̂) ~dotted line! of the transformed series for the surrogates. R
sults for a 512-IBI dataset and a 4096-IBI dataset are shown
panels~a! and ~b!, respectively. Inset: Plots ofJ(W), the fraction
of surrogates with maximum deviation exceedingW ~see text!. The

maximum deviationWmax betweenr(T̂) and r̄(T̂) occurs atT̂

50.31 s(Wmax54.97) for ~a!, and atT̂50.51 s (Wmax58.11) for
~b!. Arrows at Wmax indicate the statistical significance leve
J(Wmax) ~see Sec. IV A!.
8-12
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STOCHASTIC NEURAL NETWORK MODEL FOR . . . PHYSICAL REVIEW E 66, 051908 ~2002!
obtained from simulations of network 1, are shown in F

10~b!. The maximum value of the deviationW5r(T̂)
2 r̄sur(T̂) is found to beWmax58.11, which occurs atT̂
50.51. However, the fraction of surrogates with maximu
deviation exceeding this value is fairly large:J(Wmax)
.0.39, as shown by the arrow in the inset of Fig. 10~b!. This
means that this candidate UPO should not be considered
tistically significant at the confidence level of 95% used
the analysis of Ref.@16#. In a similar analysis carried out fo
35 datasets withm>2048, we found a statistically signifi
cant UPO in only one dataset withm52048. Thus, this sur-
rogate analysis recognizes our IBI time series to be stoc
tic if a sufficiently large dataset is used in the analysis.

However, the same analysis leads to false detection
‘‘statistically significant’’ ~at the 95% confidence leve!
UPOs in a substantial fraction of windowed datasets ifm is
small. The results for a window withm5512, obtained from
simulations of network 1 and showing the presence of a ‘‘s
tistically significant’’ UPO, are plotted in Fig. 10~a!. In this
case, the probability of finding the peak (Wmax54.97 atT̂
50.31) in the surrogates is very low, around 1%, as in
cated by the arrow in the inset of the figure, leading to
false identification of a statistically significant UPO at 95
confidence level. A similar plot for am5128 dataset may be
found in Ref.@21#.

We have carried out a systematic analysis for differ
values ofm and observed that the criteria adopted in Re
@15# and@16# fail to recognize our IBI datasets as stochas
in a significant fraction of trials ifm is small. Results of this
analysis, carried out for IBI datasets collected from ten n
works, are summarized in Table III. The total number
nonoverlapping windows used in the analysis for each w
dow sizem is listed in the third column of the table. Th
second column lists the percentage of networks with at le
one window with a statistically significant UPO at 95% co
fidence level, and the fourth column lists the percentagef of
windows~combined from all networks! with statistically sig-
nificant UPOs. These results are quite similar to those
ported in Ref.@16# for extracellular brain-slice data at rela
tively low potassium levels.

A similar analysis for a two-dimensional delay embeddi
of the IBI time series obtained from the brain-slice expe

TABLE III. Statistical significance of UPOs in windowe
datasets from ten networks, according to the method of Soet al.
~see Sec. IV A!. The number of IBIs in each nonoverlapping win
dow and the percentage of networks showing statistically signific
UPOs are given in columns 1 and 2, respectively. The total num
of windows used in the analysis and the percentage of wind
showing statistically significant UPOs are given in columns 3 a
4, respectively.

Window size % significant No. of windows % significan
networks windows

32 80 544 8.82
64 100 272 10.29
128 50 136 8.82
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ment was performed in Ref.@15#. We have carried out the
same analysis using simulation data obtained for networ
In our analysis, we scaled the IBI data to match the ti
scale of the experiment, used parameter values identica
those in Ref.@15# (k55.0, 500 values ofR, and 100 surro-
gates!, and considered a large number of overlapping a
nonoverlapping windows of different size. The results of th
analysis are very similar to those described above. For
ample, we found ‘‘statistically significant’’ UPOs in 75 out o
1024 nonoverlapping 32-IBI windows. The values off were
found to vary between 1.6% and 9.4% as the window sizm
was varied between 32 and 1024, and no UPO was found
m>2048. In Ref.@15#, the results of the surrogate analys
for the detection UPOs in overlapping 128-IBI window
were presented in the form of a gray-scale plot from which
is difficult to extract quantitative information such as th
value off. For this reason, we could not compare our resu
directly with those of Ref.@15#.

The method of Ref.@14# can be extended@15# to the de-
tection of orbits of period higher than 1. Using this metho
So et al. @16# have detected statistically significant UPOs
higher period in intracellular data obtained from brain slic
Since intracellular recordings reflect a combination of colle
tive and single-neuron dynamics, our network with bina
neurons is not appropriate for the modeling of such da
Nevertheless, we have carried out a simple analysis for
detection of period-2 orbits in the simulation data for n
work 1. Since a period-2 orbit corresponds to a fixed poin
the second iterate of the dynamics, we considered the t
seriesT1 ,T3 ,T5 , . . . ,Tm21 (T2 ,T4 ,T6 , . . . ,Tm) consisting
of only the odd-numbered~even-numbered! terms in am-IBI
window (m even! of the original time series, in our analys
for the detection of period-2 orbits. The method describ
above for the detection of statistically significant fixed poin
was then applied separately to the odd- and even-numb
datasets. If a period-2 orbit is present in them-IBI window of
the original dataset, then this calculation should show t
statistically significant fixed points in both the odd- an
even-numbered datasets, and the locations of these fi
points should be nearly the same in the two datasets.
have confirmed that this method succeeds in detec
period-2 UPOs in the Henon map.

Since the IBIs in our stochastic time series are indep
dent random variables, the time series obtained by retain
only even- or odd-numbered terms are statistically ident
to the original one. We, therefore, expect that a perio
analysis for the even- and odd-numbered datasets w
yield results that are very similar to those obtained in o
analysis for period-1 orbits in the original dataset. In o
original period-1 analysis, we found very few windows wi
more than one statistically significant UPOs. Further, sin
the even- and odd-numbered datasets are statistically i
pendent, it is highly improbable that both of them wou
exhibit UPOs at approximately the same locations. So,
probability that the even- and odd-numbered datasets wo
each exhibit two statistically significant UPOs at appro
mately the same locations is expected to be very small
our stochastic time series. The results of our analysis
consistent with this expectation. In our analysis of a 32 7
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B. BISWAL AND C. DASGUPTA PHYSICAL REVIEW E66, 051908 ~2002!
IBI time series from network 1 with window sizes varyin
from 128 to 8192, we did not find any window in which th
criteria mentioned above for the detection of period-2 orb
were satisfied. As expected, the fractionf of windows show-
ing statistically significant period-1 orbits was approximate
the same for even- and odd-numbered datasets, and
number was close to that obtained in our original perio
analysis. However, very few windows showed two period
orbits, and the results obtained for the even-numbered
from a particular window did not match the results for t
odd-numbered data from the same window. These res
confirm the stochastic nature of our IBI time series. It wou
be interesting to carry out a similar analysis for the bra
slice data.

In Ref. @16#, the values off obtained from the analysis o
intracellular data are found to be significantly higher th
those calculated from the data obtained from extracellu
recordings. This may be due to the following reason. T
extracellular data reflect the collective dynamics of the n
work, whereas intracellular recordings can resolve
‘‘spikes’’ that occur during the bursting of the neuron fro
which the recordings are made. Therefore, extracellular
cordings provide information about the times of occurren
of population bursts, while the time series obtained fro
intracellular recordings is one of interspike intervals~ISIs!,
which reflect a combination of collective and single-neur
dynamics. This difference is clear from the characteris
time scales@16# of these two kinds of data: the typical IBI i
the extracellular data is of the order of 1 s, whereas
typical ISI in the intracellular data is much smaller, of th
order of 0.05 s. Given these facts, the larger values of
obtained in the analysis of the intracellular data may be
terpreted as evidence for determinism in the spiking dyna
ics of individual neurons. This interpretation is supported
the results of de la Pridaet al. @35#, who carried out a carefu
surrogate analysis of intracellular data recorded from imm
ture hippocampal networks. They found that the IBIs in th
time series are purely stochastic, whereas the spikes
form the intrinsic structure of individual bursts show ev
dence for deterministic dynamics. These results suggest
determinism and stochasticity need not be mutua
exclusive—the same system may show both kinds of dyn
ics at different levels and time scales. The dynamics of
networks illustrates the same point: the time evolution of
network in the low- and high-activity states is mostly det
ministic, whereas transitions between these two states
stochastic.

Since the confidence level for the detection of statistica
significant UPOs was set at 95% in our calculations, val
of f for the stochastic IBI data obtained from simulations
our network model are expected to be near 5%. Our res
for datasets withm>2048 are consistent with this expect
tion. The significantly higher values off ~near 10%, as shown
in Table III! obtained from our analysis of windowe
datasets withm<128 must then be attributed to insufficie
sampling. The similarity between our results and those
ported in Ref.@16# for the extracellular brain-slice data su
gests that the relatively large values off obtained in Ref.@16#
may also be due to insufficient sampling. It would be int
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esting to check this possibility by carrying out a surroga
analysis of the brain-slice data using windows of larger si
A reduction of the values off with increasingm would sug-
gest stochastic behavior. However, a similar trend would a
be found if the dynamics of brain slices is nonstationary.
it would be difficult to distinguish between stochasticity a
nonstationarity from an analysis of this kind. This appears
be a drawback of this method of detecting UPOs in exp
mental time-series data. Another possible source of insu
cient statistics in the analysis@16# of the brain-slice data is
the relatively small number~between 33 and 71! of win-
dows. Our studies show that the difference between the
culated and expected values of the fractionf of windows
showing statistically significant UPOs decreases as the n
ber of windows used in the analysis is increased.

A recent study@17# has reported large values off ~be-
tween 12.5% and 42.1%! obtained from analysis of win-
dowed brain-slice data. In this work, IBI data were record
under three different experimental conditions: high-@K1#,
low-@Mg21#, and the presence of GABAA-receptor antago-
nists. The method of Soet al. @15# with a two-dimensional
delay embedding was applied to overlapping 256-IBI w
dows. The reported values of the fraction of experime
showing at least one window with a statistically significa
UPO are similar to those obtained in our simulations. Ho
ever, the values off are considerably larger. The statistic
significance of the results obtained in the low-@Mg21# and
GABAA-antagonist experiments is questionable becaus
small number~16 and 19, respectively! of windows were
used in these experiments. In a dataset of 256 nonover
ping 32-IBI windows obtained from simulations of netwo
1, we found two separate 19-window and 16-window se
ments for which the values off are 42.1% and 31.3%, re
spectively, although the value off obtained for the full 256-
window dataset is much smaller~10.5%!. Short segments o
;20 windows with similar values off were also found in
other datasets. Thus, our model can produce such large
ues off if a small number of windows is considered. How
ever, we did not find any segment of 60 or more windows
which the value off is more than about 15%. So, it is un
likely that our model would reproduce the period-1 result
Ref. @17# for high-@K1# ( f 529% for 62 windows! and the
result of Ref.@16# for 10.5 mM K1 ( f 521% for 67 win-
dows!. More data to ascertain the statistical significance
these experimental results would be very useful.

B. Method of Van Quyen et al.

Van Quyenet al. @19# used a similar method to analyz
ISI data obtained from human epileptic activity. We ha
carried out the same analysis for our simulation data.
repeat their method as closely as possible, the IBI data f
network 1 were rescaled so that the range over which
IBIs vary remains approximately the same as that in the
perimental data. The range of the experimental data is ab
250 ms, whereas that for the IBI data from network 1
about 1000 passes. So, one pass in the network dyna
was assumed to be equal to 0.25 ms. Other parameters
in our analysis, such as bin sizes for histograms, the radiu
8-14
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STOCHASTIC NEURAL NETWORK MODEL FOR . . . PHYSICAL REVIEW E 66, 051908 ~2002!
circles on the identity line~see below! and the number of
surrogates, were maintained at the values used by Van Q
et al.

We used a dataset withm51024 IBIs ~this number is
close to 1062, the number of points in the dataset used in
analysis of Ref.@19#! obtained from simulations of networ
1 in our analysis. The IBI dataset$Tn%, n51,2, . . . ,1024,
used in our analysis and a histogram~bin size5 5ms! of the
distribution of the IBIs are shown in Figs. 11~a! and 11~b!.
Our IBI data exhibit a Poisson distribution which is differe
from the nearly Gaussian distribution found in Ref.@19#. The
density of points within a small circle of radius 8 ms arou
a pointTn on the diagonal line in the return map provides
crude measure of the probability of successive IBIs to rem
near the sameTn @19#. A plot of this density~probability of
recurrence! as a function ofTn is shown in Fig. 11~d!. Five
main peaks in the recurrence probability, atT150.027 s,
T250.045 s,T350.06 s,T450.087 s, andT550.125 s, are
found. The locations of these peaks in the return map
indicated by circles in Fig. 11~c!. This inhomogeneous clus
tering of points in the return map is qualitatively similar
that observed in Ref.@19#. Therefore, the interpretation@19#
of this clustering as a significant indication of correlation
successive IBIs may not be correct.

Since our IBIs follow a Poisson distribution, we could n
use one of the methods used in Ref.@19# to construct the
surrogate datasets. We considered three types of random
rogates that preserve the distribution of the IBIs. These ar
follows.

~1! Gaussian-scaled phase-shuffle [36].Random shuffling
of the dataset in a manner that approximately preserves
power spectrum. This is the same as the method use

FIG. 11. Probability of recurrence of IBIs, according to th
method of van Quyenet al. ~see Sec. IV B!. Panel~a!: 1024 IBIs
(Tn) from network 1, rescaled to match the time scale of the
periment. Panel~b!: Distribution of the IBIs. Panel~c!: Return map
with clustering of points~recurrence! along the identity line,
marked with circles of radius 8 ms. Panel~d!: the probability den-
sity of the points along the diagonal.
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generate surrogates of type II in Ref.@19#.
~2! Random shuffle.Simple random shuffling of the IBI

dataset. This maintains the distribution but destroys corr
tions.

~3! Poisson simulation.Surrogate datasets generated fro
simulations of a Poisson process, as described in Sec. I

The transformation of Eq.~6!, with k55 and 500 values
of R, was then applied to the original dataset and the su
gates, and the probability distributionr(T̂) for the original
data and the distributionsrsur(T̂) for each of the surrogate
were calculated. Following Ref.@19#, we considered 39 dif-
ferent realizations of each type of surrogate data. The sta
tical significance of a candidate UPO corresponding to
peak ofr(T̂) at T̂5T* was estimated by a one-tailed Mon
Carlo test@19#:

P5
@number of cases$rsur~T* !>r~T* !%#11

~number of surrogates!11
. ~9!

Van Quyen et al. considered peaks withP50.025, i.e.,
rsur(T* ) , r(T* ) for all 39 surrogates, to be statisticall
significant.

The results of our analysis for surrogates of type 1
plotted in Fig. 12. The lower panel shows histograms
r(T̂) and the average ofrsur(T̂). The upper panel shows th
degree of statistical confidence in the detection of UP
This is defined as 100(12P)%. This analysis finds the
peaks atT5 to be statistically significant according to th
criterion ~97.5% confidence level! adopted by Van Quyen
et al. for all three types of surrogates. It is important to no
that the remaining four peaks are found to be spurious
spite of the high weightage of these peaks in Fig. 11~d! and
large clustering of points in this region of the return m
@Fig. 11~c!#. In the surrogate analysis, peaks atT50.125 s,
0.1875 s for surrogate type 1,T50.015 s, 0.125 s, 0.1875 s

-

FIG. 12. Statistical significance of candidate UPOs near
peaks in Fig. 11~d!. The solid line in panel~b! shows the histogram

of r(T̂) and the dashed line shows the average ofrsur(T̂) obtained
from 39 surrogates. The upper panel~a! shows the degree of statis
tical confidence in the detection of UPOs near the location of
peaks. The confidence level is defined as 100(12P)% with P de-
termined from a Monte Carlo test@Eq. ~9!#.
8-15
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B. BISWAL AND C. DASGUPTA PHYSICAL REVIEW E66, 051908 ~2002!
0.21 s for surrogate type 2 andT50.015 s, 0.125 s, 0.21 s fo
surrogate type 3 were found to be statistically significan
97.5% confidence level. The peaks atT50.1875 s,0.21 s,
found to be statistically significant for two of the three typ
of surrogates, are probably irrelevant, as they are in the
of the distribution and no clustering of points on the ident
line in the return map@Fig. 11~c!# is found around these two
points.

Following Ref.@19#, we further examined the significanc
of the apparent UPO atT5 by looking for recurrent UPO-like
trajectories around this point in the first return map.
shown in Fig. 13, such trajectories are indeed present in
IBI dataset. The ‘‘recurrent UPO’’ nearT5 has a stable mani
fold, y50.1735x10.1015, and an unstable manifol
y521.4x10.2978. These are indicated in the figure
lines with arrows.

Surprisingly, this analysis fails to reject all UPO-like tr
jectories in our stochastic IBI dataset as spurious. Rather
results arequantitativelysimilar to those of Ref.@19#. This
clearly shows that the methods and criteria used by
Quyenet al. are not completely reliable for identifying tru
UPOs. Therefore, some of the apparent UPOs found by t
in human epileptic activity may not be real. The false po
tive results obtained in this analysis may be due to the sm
size of the dataset. When a larger dataset containing 8
IBIs from the same network simulation was analyzed, s
nificantly different results with no prominent peaks in t
distributionr(T̂) were obtained. The use of a small numb
of surrogates may be another reason for the failure of
method to identify our dataset as stochastic.

C. Topological recurrence criterion

In this method@13,34#, the number of UPO-like trajecto
ries in the first return map of the original dataset is compu
and compared with the values of the same quantity obta
for surrogates of the original dataset. The following crite
are used for identifying UPO-like trajectories.

Level 0.There must be three sequential points that
proach the identity line at successively decreasing perp
dicular distances, followed by three sequential points t

FIG. 13. Detection of UPO-like trajectories around the ‘‘stat
tically significant’’ UFP atT550.125 s~see Fig. 12!.
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depart at successively increasing distances. The third poi
common to both sequences.

Level 1.A straight-line fit to the three approaching poin
must have a slopems with 21<ms,0 and a straight-line fit
to the three departing points must have a slopemus with
2`,mus,21.

Level 2.The distance of the point of intersection of the
two straight lines from the identity line must be smaller th
half of the mean of the distances of the five points in t
approaching and departing sequences.

We have analyzed IBI datasets from ten networks for ‘‘e
counters’’ that satisfy the criteria mentioned above. LetN be
the number of encounters detected for a dataset. Using
same criteria, encounters are searched for in 100 Gaus
scaled phase-shuffled surrogates of the original data
Then, the statistical measureK5(N2^Ns&)/ss is computed,
where^Ns& is the mean andss is the standard deviation o
the number of encounters found in the surrogate datasets
Gaussian statistics,K>2 represents a statistically significa
detection of the presence of UPOs with a confidence le
greater than 95%.

This surrogate analysis successfully identifies all the
datasets of varying lengths from the ten networks as stoc
tic, i.e., statistically significant UPOs are not found. T
value of K is always close to zero and sometimes negat
for large datasets. For a few datasets of small lengthm
<1024), values ofK greater than 1 are found, but they a
not statistically significant at the 95% confidence level. F
some of the datasets, we also calculated the maximum va
Nmax, of the number of encounters found in the surrogat
In all these cases, the number of encountersN in the original
dataset was found to be smaller thanNmax. Typical results
obtained for network 1 are shown in Table IV. Similar resu
were obtained in an analysis of datasets obtained from P
son simulations.

TABLE IV. Results of surrogate analysis of IBI datasets fro
network 1, using the topological recurrence criterion~see Sec.
IV C!. Columns 1–7 list, respectively, the size of the datasem
~number of IBIs!, the number of Gaussian-scaled phase-shuffl
surrogates used in the analysis, the numberN of UPO-like trajecto-
ries ~encounters! found in the original dataset, the average numb
^Ns& of encounters found in the surrogates, the standard devia
ss of the number of encounters found in the surrogates, the st
tical measureK5(N2^Ns&)/ss , and the maximum valueNmax of
the number of encounters found in the surrogates.

m No. of surrogates N ^Ns& ss K Nmax

64 100 1 0.56 0.82 0.54 3

128 100 2 1.34 1.02 0.65 4

256 100 2 2.41 1.72 20.24 7

512 100 3 4.29 2.07 20.62 10

1024 100 8 8.52 3.18 20.16 16

2048 100 18 16.87 3.97 0.28 25

4096 100 35 34.72 6.44 0.04 53

8192 100 80 72.67 8.73 0.84 96
8-16



pe
s
I

he

e
IB
on

nt
s
hi
e
to
e
o

th
its
a
ll
O
e

to
sit
it

is
t
a
te
t

Th

ct

io
o

e
p
g
ili
ri-
d
in
r

de
a

tic
s

tin
av
a
he

es

that
on-
re-
the
f
-
ne
er-
c-
-

n
i-

in
the
od-
idal
s

ss is

at
of
stic
oes
ld
i-
IBI

nts
trol
sta-
een
ng
uch
ue

g

e
be
s to
nent
rks
ng
l-

rk
uent
et-
vi-
ties

ssi-
t for
ork

STOCHASTIC NEURAL NETWORK MODEL FOR . . . PHYSICAL REVIEW E 66, 051908 ~2002!
We have also carried out a systematic analysis of the
centagef of windows showing statistically significant UPO
according to this criterion. Using a dataset with 32 768 IB
obtained from simulations of network 1, we found that t
values of f for different window sizes (64<m<2048) lie
between 0 and 6.3. These results are consistent with the
pectation that about 5% of the windows of our stochastic
data should show statistically significant UPOs at 95% c
fidence level.

We, therefore, conclude that this method correctly ide
fies the datasets from our network and Poisson simulation
stochastic. However, we were surprised to find that t
method also identifies certain datasets of small length, g
erated from the logistic map in the chaotic regime, as s
chastic. For example, this method showed the presenc
statistically significant UPOs in only 5 of 32 datasets
length 1024 generated from the logistic map witha53.99.
This observation argues against a complete reliability of
method. If the probability that a deterministic system vis
the neighborhood of a particular UPO during the time sp
of the dataset being analyzed is comparable to or sma
than the probability of purely accidental appearance of UP
like trajectories in a surrogate of the original dataset, th
this method would wrongly identify the original data as s
chastic. Since the probability of a deterministic system vi
ing the neighborhood of a UPO can, in general, be qu
small ~the logistic map is an example of this!, this method
would not work in all cases. However, the error that th
method would produce in such cases is in a direction tha
opposite to that of the other methods of surrogate data an
sis we have considered. This method may identify a de
ministic time series as a stochastic one, but it is unlikely
identify a stochastic time series as a deterministic one.
other methods we have considered lead to the~incorrect!
conclusion that our stochastic IBI series has some chara
istics of a deterministic one.

V. SUMMARY AND DISCUSSION

The main result of our investigation is the demonstrat
that simulations of our neural network model reproduce m
of the features found in brain-slice experiments@9,18#, and in
surrogate analysis@15–17# of the data obtained from thes
experiments. This result suggests that our model is an ap
priate one for describing spontaneous population burstin
hippocampal slices. We have also shown that the variab
of the IBIs in our network model is purely stochastic in o
gin. This casts serious doubt on the conclusions reache
Refs. @9,15–18# about signatures of deterministic chaos
the underlying dynamics of brain slices. Rather, our wo
strongly suggests that the bursting dynamics is well
scribed by ‘‘bistability’’ with stochastic transition between
low-activity ~normal! attractor and a high-activity~epileptic!
attractor of the underlying neuronal network. The stochas
ity of the IBIs in our simulations is a consequence of the u
of random sequential updating. We believe that this upda
scheme is the most ‘‘physical’’ one for describing the beh
ior of brain slices, because any external ‘‘clocklike’’ mech
nism that may synchronize or order in time the firing of t
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neurons is not expected to be present in suchin vitro sys-
tems. However, this may not be ruled out inin vivo systems,
where the region of bursting activity continuously receiv
inputs from many other regions of the living brain@37#.

There exist other results that support the conclusion
the bursting dynamics of brain slices is stochastic. The sp
taneous bursting behavior of rat hippocampal slices, p
pared in exactly the same way as the ones studied in
experiment of Schiffet al. @9#, were tested for signatures o
determinism in Ref.@25#. Three different tests were con
ducted for each of six slices. Out of the 18 tests, only o
showed a statistically significant positive signature of det
minism. In intracellular recordings from immature hippo
ampal networks@35#, the IBIs were found to be purely ran
dom, following a Poisson distribution. Slutzkyet al. @17# did
not find any evidence of determinism in their ‘‘expansio
rate analysis’’ of IBI data from hippocampal slices. A phys
ologically realistic computer model@38# of synchronized epi-
leptiform bursts induced by high potassium concentration
rat hippocampal slices had to include stochasticity in
form of spontaneous excitatory postsynaptic potentials m
eled by an independent Poisson process for each pyram
cell. This is similar to the behavior found in our simulation
where the presence of stochasticity in the updating proce
necessary for generating irregular IBIs.

Our work, however, does not rule out the possibility th
the bursting behavior in brain slices is a manifestation
deterministic chaos. The demonstration that our stocha
model reproduces the experimentally observed behavior d
not imply that other, possibly deterministic, models wou
not be equally~or more! successful in describing the exper
mental results. Our systematic analysis of the stochastic
data obtained from simulations of our network model poi
out several signatures of stochastic dynamics in the con
behavior and in the results of surrogate analysis for the
tistical significance of UPOs. These signatures have b
discussed in detail in Secs. III and IV. It would be interesti
to look for these signatures in brain-slice experiments. S
investigations would be very helpful in establishing the tr
nature of the collective dynamics of brain slices.

In our simulations, applications of external stimuli durin
control procedures do not alter the parameters~such as syn-
aptic strengths, the relative strength of inhibition and tim
delays! that govern the network dynamics. This may not
true in networks of biological neurons. There are reason
believe that repeated external stimulation causes perma
changes in the connectivity pattern of neuronal netwo
through synaptic plasticity. The phenomenon of kindli
@22#, for which the model studied here was originally deve
oped@20#, is a well-known example of changes in netwo
properties caused by repeated external stimulation. Freq
stimulations may also alter the dynamics of biological n
works by making the neurons fatigued or refractory. E
dence for stimulation-induced changes in network proper
may be found in Ref.@18#. Any interpretation of the results
of brain-slice experiments must take into account the po
bility of such changes. These changes may also accoun
some of the differences between the results of our netw
8-17
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simulation and those of brain-slice experiments.
Results of our surrogate analysis of IBI datasets for de

mining the statistical significance of UPO-like trajectori
found in these purely stochastic time series cast ser
doubts on the reliability of the statistical methods used
Refs. @15,16,19#, especially for datasets of relatively sma
length. Our work suggests that far more stringent criteria
s
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analysis are required for unambiguously establishing sig
tures of deterministic chaos in experimental time-series d
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